
4/6/16 Comp 555 Spring 2016 1

4/6/16 Comp 555 Spring 2016 2

•  If the distance matrix D is NOT additive, then we look for a tree T
that approximates D the best:

 Squared Error : ∑i,j (dij(T) – Dij)2

•  Squared Error is a measure of the quality of the fit between
distance matrix and the tree: we want to minimize it.

•  Least Squares Distance Phylogeny Problem: finding the best
approximation tree T for a non-additive matrix D (NP-hard).

4/6/16 Comp 555 Spring 2016 3

• Unweighted Pair Group Method with
Arithmetic Mean (UPGMA)

• An tractable alternative to a least-squares
distance solution

• UPGMA is a hierarchical clustering algorithm:
– assigns the distance between clusters to be the

average pairwise distance
– assigns a height to every vertex in the tree,

that is midway between the cluster distances

4/6/16 Comp 555 Spring 2016 4

C1 C2

d12

C12

C1 C2 C3

C123

½ d3(12) ½ d12

1 4 3 2

UPGMA generates
trees like this

2

3

4
1

But never
trees like this

Assume decedents are equidistance from their ancestors….

4/6/16 Comp 555 Spring 2016 5

•  The algorithm produces an ultrametric tree
• Distance from the root to every leaf is the same
• Distance from an interior node to any of its

children is the same
• UPGMA models a constant molecular clock:

–  all species represented by the leaves in the tree
–  assumed to coexist at t=0 and to have accumulated

mutations (and thus evolve) at the same rate.

•  In reality the assumptions of UPGMA are
seldom true, but they are frequently
approximately true.

4/6/16 Comp 555 Spring 2016 6

Given two disjoint clusters Ci, Cj of sequences,

Note that if Ck = Ci ∪ Cj, then the distance to
another cluster Cl is:

€

dij =
1

Ci C j

dij
p∈Ci
q∈Cj

∑

€

dkl =
dil C i + d jl C j

C i + C j

4/6/16 Comp 555 Spring 2016 7

Initialization:
 Assign each xi to its own cluster Ci
 Define one leaf per sequence, each at height 0

Iteration:
 Find two clusters Ci and Cj such that dij is min
 Let Ck = Ci ∪ Cj
 Add a vertex connecting Ci, Cj and place it at height dij /2

 Delete Ci and Cj
Termination:

 When a single cluster remains

4/6/16 Comp 555 Spring 2016 8

1 4

3 2 5

1 4 2 3 5

4/6/16 Comp 555 Spring 2016 9

 Sequence a gene of length m nucleotides in n
species to generate an…
 n x m alignment matrix

n x n distance
matrix

CANNOT be
transformed back
into alignment
matrix because
information was
lost on the
forward
transformation

Transform
into… X

4/6/16 Comp 555 Spring 2016 10

•  Better technique:
– Character-based reconstruction algorithms

use the n x m alignment matrix
 (n = # species, m = #characters)
 directly instead of using distance matrix.
–  GOAL: determine what character strings at internal

nodes would best explain the character strings for the
n observed species

4/6/16 Comp 555 Spring 2016 11

•  Characters may be nucleotides of an aligned
DNA, where A, G, C, T, - are states of this
character

• Other characters may be the # of eyes or legs or
the shape of a beak or a fin.

•  By setting the length of an edge in the tree to the
Hamming distance, we may define the
parsimony score of the tree as the sum of the
lengths (weights) of the edges

4/6/16 Comp 555 Spring 2016 12

• Assumes observed character differences result
from the simplest possible, most parsimonious,
explanation (i.e. the fewest mutations)

•  Seeks the tree that yields lowest possible
parsimony score - sum of cost of all changes
mutations found in the tree

•  Example: What is the most parsimonious
ancestor to the following three sequences:

 {ATCG, ATCC, ACGG}

4/6/16 Comp 555 Spring 2016 13

Parsimony score: 5

2 2

ACTC

1 0

ATCC ACGG

ATCG ATCC

Parsimony score: 6

1 1

ATGC

2 2

ATGT ATCC

ATCG ACGG

0 1

ATGG

2 1

ATGG ATCG

ATCC ACGG

Parsimony score: 4

•  Given ancestors and a tree relating them to the leafs, it is
a simple matter to compute a parsimony score

4/6/16 Comp 555 Spring 2016 14

By labeling a tree’s leaves with characteristics (in this case eyebrow and
mouth shapes) we implicitly create a feature vector. Using this feature
vector we can measure the parsimony score for any proposed lineage.
We can also pose the problem of how to best assign the features of
ancestor (interior) notes such as to minimize the parsimony score.

4/6/16 Comp 555 Spring 2016 15

•  Input: Tree T with each leaf labeled by an m-
character string.

• Output: A labeling of internal vertices of the tree
T with ancestors that achieves a minimal
parsimony score (this assignment may not be
unique).

•  If we assume the characters in the string are
independent, then we can solve this problem for
one feature at a time using the common tree
topology.

4/6/16 Comp 555 Spring 2016 16

• A more general version of Small Parsimony
Problem

•  Input includes a k×k scoring matrix describing the
cost of transforming each of the k features into
another one

•  For the unweighted, Small Parsimony problem, the
scoring matrix is simply the Hamming distance, or
a binary scoring matrix.

 dH(v, w) = 0 if v=w
 dH(v, w) = 1 otherwise

4/6/16 Comp 555 Spring 2016 17

δ A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

δ A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem

4/6/16 Comp 555 Spring 2016 18

Small Parsimony Scoring Matrix:

δ A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

Small Parsimony Score: 5

4/6/16 Comp 555 Spring 2016 19

Weighted Parsimony Scoring Matrix:

δ A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Weighted Parsimony Score: 22

4/6/16 Comp 555 Spring 2016 20

Problem: Formulation
•  Input: Tree T with each leaf labeled by elements

from a k-letter alphabet, and a k × k scoring
matrix (δij)

• Output: Labeling of internal vertices of the tree T
minimizing the weighted parsimony score

4/6/16 Comp 555 Spring 2016 21

•  Check the children of a
vertex and determine the
parent, from the set of k,
that minimizes the score
between them

•  An example
δ A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

9 7 8 9

A T G C
7 2 2 8

A T G C

A C T G

? ?

?

A C T G

T T

T

0 ∞ ∞ ∞

A T G C

∞ ∞ ∞ 0

A T G C

∞ 0 ∞ ∞

A T G C

∞ ∞ 0 ∞

A T G C

9 7 8 9

A T G C
7 2 2 8

A T G C

0 ∞ ∞ ∞

A T G C

∞ ∞ ∞ 0

A T G C

∞ 0 ∞ ∞

A T G C

∞ ∞ 0 ∞

A T G C

14 9 10 15

A T G C

14 9 10 15

A T G C

k3 tests
A,T!A (9+0+2+3 = 14),
T,T!T (7+0+2+0 = 9),

G,G!G (8+0+2+0 = 10),
C,T!C (9+0+2+4 = 15)

k tests
A,C!A (0+9 = 9),
A,C!T (3+4 = 7),
A,C!G (4+4 = 8),
A,C!C (9+0 = 9)

4/6/16 Comp 555 Spring 2016 22

Two traversals of the tree.
•  The scores are computed by going up the tree

until the root vertex is reached
• After the scores at root vertex are found the

Sankoff algorithm moves down the tree and
assign each vertex with optimal character.

4/6/16 Comp 555 Spring 2016 23

9 is derived from 7 + 2

And that score assumed the
left child was T, and right
child is T

We need not only to compute the scores, but the path of
how it was reached. Have we seen this before?

4/6/16 Comp 555 Spring 2016 24

And the tree is thus labeled…

4/6/16 Comp 555 Spring 2016 25

Using Dynamic Programming
•  Calculate and keep track of a score for every

possible label at each vertex
–  st(v) = minimum parsimony score of the subtree

rooted at vertex v if v has character t

•  The score at each vertex is based on scores of its
children:
–  st(parent) = mini {si(left child) + δi, t} +
 minj {sj(right child) + δj,t}

•  O(nk3) steps are required

4/6/16 Comp 555 Spring 2016 26

• Also solves Small Parsimony problem
• Assigns a set of characters to every vertex

in the tree.
•  If the two children’s sets of character overlap,

it’s the common set (intersection) of them
•  If not, it’s the combined set (union) of them.

4/6/16 Comp 555 Spring 2016 27

a

a

a

a

a

a

c

c

 {t,a}

c

t

t

t

 {t,a}

 a

 {a,c}

 {a,c}
a

a

a

a a t c

An example:

4/6/16 Comp 555 Spring 2016 28

1) Assign a set of possible letters to every vertex,
traversing the tree from leaves to root

•  Each node’s set is the union of its children’s sets
(leaves contain their label) if they are disjoint
–  E.g. if the node we are looking at has a left child

labeled {A} and a right child labeled {C}, the node
will be given the set {A, C}

•  Each node’s set is the intersection of its
children’s sets (leaves contain their label) if they
overlap
–  E.g. if the node we are looking at has a left child

labeled {A, C} and a right child labeled {A, T}, the
node will be given the set {A}

4/6/16 Comp 555 Spring 2016 29

2) Assign labels to each vertex, traversing the tree
from root to leaves

• Assign root arbitrarily from its set of letters
•  For all other vertices, if its parent’s label is in its

set of letters, assign it its parent’s label
•  Else, choose an arbitrary letter from its set as its

label

4/6/16 Comp 555 Spring 2016 30

{A} {C} {G} {G}

{A,C} {G}

{A,C,G}
Up the tree…

4/6/16 Comp 555 Spring 2016 31

{A} {C} {G} {G}

{A,C} {G}

A

A G
 0 1 Parsimony Score=2

0 1 0 0

Down the tree…

4/6/16 Comp 555 Spring 2016 32

{A} {C} {G} {G}

{A,C} {G}

{A,C,G}
A different random choice…

C

C G
 0 1 Parsimony Score=2

1 0 0 0

4/6/16 Comp 555 Spring 2016 33

•  Fitch has an O(nk) runtime, assuming O(k) set
operations

• Are they actually different?

•  Let’s compare …

4/6/16 Comp 555 Spring 2016 34

As seen previously:

4/6/16 Comp 555 Spring 2016 35

•  As seen earlier, the scoring matrix for the Fitch algorithm
is merely:

•  So let’s do the same problem using Sankoff algorithm
and this scoring matrix

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

4/6/16 Comp 555 Spring 2016 36

4/6/16 Comp 555 Spring 2016 37

•  The Sankoff algorithm gives the same set of optimal
labels as the Fitch algorithm

•  For Sankoff algorithm, character t is optimal for vertex v
if st(v) = min1<i<ksi(v)
–  Denote the set of optimal letters at vertex v as S(v)

•  If S(left child) and S(right child) overlap,
assign S(parent) is the intersection

•  else assign S(parent) the union of S(left child) and S(right child)
•  This is also the Fitch recurrence

•  The two algorithms give identical answers

4/6/16 Comp 555 Spring 2016 38

•  Input: An n x m matrix M describing n species,
each represented by an m-character string

• Output: A tree T with n leaves labeled by the n
rows of matrix M, and a labeling of the internal
vertices such that the parsimony score is
minimized over all possible trees and all
possible labelings of internal vertices

No tree is provided.
So we have to infer
 both the tree and
 the ancestor
 characters

4/6/16 Comp 555 Spring 2016 39

•  Possible search space is huge, especially as n
increases

• How many rooted binary trees with n leafs?

•  T(n) for 2, 3, 4, 5, 6, 7, 8, 9, 10, …
 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425…

€

T (n) =
(2n − 3)!
2n−2 (n − 2)!

4/6/16 Comp 555 Spring 2016 40

•  e.x. 4 leaf trees, two topologies.

•  Search all possible trees is NP-hard
–  Exhaustive search only possible w/ small n(< 10)

• Hence, heuristics are used for larger problems

€

4 −1= 3

€

4 × 3 = 12

4/6/16 Comp 555 Spring 2016 41

A Greedy Algorithm
•  Start with an initial guess for the tree (perhaps

made over the entire feature set using UPGMA)
• Apply “Branch Swapping” to improve the

parsimony score until there are no more swaps
• Only evaluates a subset of all possible trees
• Defines a neighbor of a tree as one reachable by a

nearest neighbor interchange
–  A rearrangement of the four subtrees defined by one

internal edge
–  Only three different rearrangements per edge

4/6/16 Comp 555 Spring 2016 42

4/6/16 Comp 555 Spring 2016 43

•  Start with an arbitrary tree and check its
neighbors

• Move to a neighbor if it provides the best
improvement in parsimony score

• No way of knowing if the result is the most
parsimonious tree

•  Could get stuck in local minimum

• Are Perfect Phylogeny Trees possible?
• Under what conditions can we construct a tree

 that explains every mutation in the most
 parsimonious way?

4/6/16 Comp 555 Spring 2016 44

