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•  If the distance matrix D is NOT additive, then we look for a tree T 
that approximates D the best: 

               Squared Error :   ∑i,j (dij(T) – Dij)2 

•  Squared Error is a measure of the quality of the fit between 
distance matrix and the tree: we want to minimize it. 

•  Least Squares Distance Phylogeny Problem: finding the best 
approximation tree T for a non-additive matrix D (NP-hard). 
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• Unweighted Pair Group Method with 
Arithmetic Mean (UPGMA) 

• An tractable alternative to a least-squares 
distance solution 

• UPGMA is a hierarchical clustering algorithm: 
– assigns the distance between clusters to be the 

average pairwise distance 
– assigns a height to every vertex in the tree,  

that is midway between the cluster distances 
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UPGMA generates  
trees like this 
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But never  
trees like this 

Assume decedents are equidistance from their ancestors…. 
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•  The algorithm produces an ultrametric tree 
• Distance from the root to every leaf is the same 
• Distance from an interior node to any of its 

children is the same 
• UPGMA models a constant molecular clock:  

–  all species represented by the leaves in the tree 
–  assumed to coexist at t=0 and to have accumulated 

mutations (and thus evolve) at the same rate.   

•  In reality the assumptions of UPGMA are 
seldom true, but they are frequently 
approximately true. 
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Given two disjoint clusters Ci, Cj of sequences, 
                         

Note that if Ck = Ci ∪ Cj, then the distance to 
another cluster Cl is: 
   

€ 

dij =
1

Ci C j

dij
p∈Ci
q∈Cj

∑

€ 

dkl =
dil C i + d jl C j

C i + C j
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Initialization: 
 Assign each xi to its own cluster Ci 
 Define one leaf per sequence, each at height 0 

Iteration: 
 Find two clusters Ci and Cj such that dij is min 
 Let Ck = Ci ∪ Cj 
 Add a vertex connecting Ci, Cj and place it at height dij /2 

 Delete Ci and Cj 
Termination: 

 When a single cluster remains 
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 Sequence a gene of length m nucleotides in n 
species to generate an… 
     n x m alignment matrix 

n x n distance 
matrix 

CANNOT be 
transformed back 
into alignment 
matrix because 
information was 
lost on the 
forward 
transformation 

Transform 
into… X 
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•  Better technique: 
– Character-based reconstruction algorithms 

use the n x m alignment matrix 
   (n = # species, m = #characters)  
   directly instead of using distance matrix.  
–  GOAL: determine what character strings at internal 

nodes would best explain the character strings for the 
n observed species 
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•  Characters may be nucleotides of an aligned 
DNA, where A, G, C, T, - are states of this 
character 

• Other characters may be the # of eyes or legs or 
the shape of a beak or a fin.  

•  By setting the length of an edge in the tree to the 
Hamming distance, we may define the 
parsimony score of the tree as the sum of the 
lengths (weights) of the edges 
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• Assumes observed character differences result 
from the simplest possible, most parsimonious, 
explanation (i.e. the fewest mutations) 

•  Seeks the tree that yields lowest possible 
parsimony score - sum of cost of all changes 
mutations found in the tree 

•  Example: What is the most parsimonious 
ancestor to the following three sequences: 

   {ATCG, ATCC, ACGG} 
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Parsimony score: 5 

2 2 

ACTC 

1 0 

ATCC ACGG 

ATCG ATCC 

Parsimony score: 6 

1 1 

ATGC 

2 2 

ATGT ATCC 

ATCG ACGG 

0 1 

ATGG 

2 1 

ATGG ATCG 

ATCC ACGG 

Parsimony score: 4 

•  Given ancestors and a tree relating them to the leafs, it is 
a simple matter to compute a parsimony score 



4/6/16 Comp 555   Spring 2016 14 

By labeling a tree’s leaves with characteristics (in this case eyebrow and  
mouth shapes) we implicitly create a feature vector. Using this feature  
vector we can measure the parsimony score for any proposed lineage.  
We can also pose the problem of how to best assign the features of  
ancestor (interior) notes such as to minimize the parsimony score. 
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•  Input: Tree T with each leaf labeled by an m-
character string. 

• Output: A labeling of internal vertices of the tree 
T with ancestors that achieves a minimal 
parsimony score (this assignment may not be 
unique). 

•  If we assume the characters in the string are 
independent, then we can solve this problem for 
one feature at a time using the common tree 
topology. 
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• A more general version of Small Parsimony 
Problem 

•  Input includes a k×k scoring matrix describing the 
cost of transforming each of the k features into 
another one 

•  For the unweighted, Small Parsimony problem, the 
scoring matrix is simply the Hamming distance, or 
a binary scoring matrix. 

      dH(v, w) = 0 if v=w  
      dH(v, w) = 1 otherwise 
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δ A T G C 
A 0 1 1 1 
T 1 0 1 1 
G 1 1 0 1 
C 1 1 1 0 

δ A T G C 
A 0 3 4 9 
T 3 0 2 4 
G 4 2 0 4 
C 9 4 4 0 

Small Parsimony Problem Weighted Parsimony Problem 
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Small Parsimony Scoring Matrix: 

δ A T G C 
A 0 1 1 1 
T 1 0 1 1 
G 1 1 0 1 
C 1 1 1 0 

Small Parsimony Score: 5 
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Weighted Parsimony Scoring Matrix: 

δ A T G C 
A 0 3 4 9 
T 3 0 2 4 
G 4 2 0 4 
C 9 4 4 0 

Weighted Parsimony Score: 22 
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Problem: Formulation 
•  Input: Tree T with each leaf labeled by elements 

from a k-letter alphabet, and a k × k scoring 
matrix (δij) 

• Output: Labeling of internal vertices of the tree T 
minimizing the weighted parsimony score 
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•  Check the children of a 
vertex and determine the 
parent, from the set of k, 
that minimizes the score 
between them 

•  An example 
δ A T G C 

A 0 3 4 9 

T 3 0 2 4 

G 4 2 0 4 

C 9 4 4 0 

9 7 8 9 

A T G C 
7 2 2 8 

A T G C 

A C T G 

? ? 

? 

A C T G 

T T 

T 

0 ∞ ∞ ∞ 

A T G C 

∞ ∞ ∞ 0 

A T G C 

∞ 0 ∞ ∞ 

A T G C 

∞ ∞ 0 ∞ 

A T G C 

9 7 8 9 

A T G C 
7 2 2 8 

A T G C 

0 ∞ ∞ ∞ 

A T G C 

∞ ∞ ∞ 0 

A T G C 

∞ 0 ∞ ∞ 

A T G C 

∞ ∞ 0 ∞ 

A T G C 

14 9 10 15 

A T G C 

14 9 10 15 

A T G C 

k3 tests 
A,T!A (9+0+2+3 = 14), 
T,T!T (7+0+2+0 = 9), 

G,G!G (8+0+2+0 = 10), 
C,T!C (9+0+2+4 = 15) 

k tests 
A,C!A (0+9 = 9), 
A,C!T (3+4 = 7), 
A,C!G (4+4 = 8), 
A,C!C (9+0 = 9) 
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Two traversals of the tree. 
•  The scores are computed by going up the tree 

until the root vertex is reached 
• After the scores at root vertex are found the 

Sankoff algorithm moves down the tree and 
assign each vertex with optimal character. 
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9 is derived from 7 + 2 

And that score assumed the 
left child was T, and right 
child is T 

We need not only to compute the scores, but the path of 
how it was reached. Have we seen this before? 
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And the tree is thus labeled… 
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Using Dynamic Programming 
•  Calculate and keep track of a score for every 

possible label at each vertex 
–  st(v) = minimum parsimony score of the subtree 

rooted at vertex v if v has character t 

•  The score at each vertex is based on scores of its 
children: 
–  st(parent) = mini {si( left child )   + δi, t} +  
                         minj {sj( right child ) + δj,t} 

•  O(nk3) steps are required 
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• Also solves Small Parsimony problem 
• Assigns a set of characters to every vertex  

in the tree. 
•  If the two children’s sets of character overlap, 

it’s the common set (intersection) of them 
•  If not, it’s the combined set (union) of them. 
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 a 
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a a t c 

An example: 
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1) Assign a set of possible letters to every vertex, 
traversing the tree from leaves to root 

•  Each node’s set is the union of its children’s sets 
(leaves contain their label) if they are disjoint 
–  E.g. if the node we are looking at has a left child 

labeled {A} and a right child labeled {C}, the node  
will be given the set {A, C} 

•  Each node’s set is the intersection of its 
children’s sets (leaves contain their label) if they 
overlap 
–  E.g. if the node we are looking at has a left child 

labeled {A, C} and a right child labeled {A, T}, the 
node will be given the set {A} 
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2) Assign labels to each vertex, traversing the tree 
from root to leaves 

• Assign root arbitrarily from its set of letters 
•  For all other vertices, if its parent’s label is in its 

set of letters, assign it its parent’s label 
•  Else, choose an arbitrary letter from its set as its 

label 
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{A} {C} {G} {G} 

{A,C} {G} 

{A,C,G} 
Up the tree… 
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{A} {C} {G} {G} 

{A,C} {G} 

A 

A G 
            0                        1          Parsimony Score=2 

0          1                     0         0 

Down the tree… 
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{A} {C} {G} {G} 

{A,C} {G} 

{A,C,G} 
A different random choice… 

C 

C G 
            0                        1          Parsimony Score=2 

1          0                     0         0 
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•  Fitch has an O(nk) runtime, assuming O(k) set 
operations 

• Are they actually different? 

•  Let’s compare … 
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As seen previously: 
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•  As seen earlier, the scoring matrix for the Fitch algorithm 
is merely: 

•  So let’s do the same problem using Sankoff algorithm 
and this scoring matrix 

A T G C 

A 0 1 1 1 

T 1 0 1 1 

G 1 1 0 1 

C 1 1 1 0 
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•  The Sankoff algorithm gives the same set of optimal 
labels as the Fitch algorithm 

•  For Sankoff algorithm, character t is optimal for vertex v 
if st(v) = min1<i<ksi(v) 
–  Denote the set of optimal letters at vertex  v as S(v) 

•  If S(left child) and S(right child) overlap,  
assign S(parent) is the intersection 

•  else assign S(parent) the union of S(left child) and S(right child)  
•  This is also the Fitch recurrence 

•  The two algorithms give identical answers 
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•  Input: An n x m matrix M describing n species, 
each represented by an m-character string 

• Output: A tree T with n leaves labeled by the n 
rows of matrix M, and a labeling of the internal 
vertices such that the parsimony score is 
minimized over all possible trees and all 
possible labelings of internal vertices 

No tree is provided. 
So we have to infer
 both the tree and
 the ancestor
 characters 



4/6/16 Comp 555   Spring 2016 39 

•  Possible search space is huge, especially as n 
increases 

• How many rooted binary trees with n leafs? 

•  T(n) for 2, 3, 4, 5, 6, 7, 8, 9, 10, … 
  1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425… 

€ 

T (n) =
(2n − 3)!
2n−2 (n − 2)!
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•  e.x. 4 leaf trees, two topologies.  

•  Search all possible trees is NP-hard 
–  Exhaustive search only possible w/ small n(< 10) 

• Hence, heuristics are used for larger problems 

€ 

4 −1= 3

€ 

4 × 3 = 12
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A Greedy Algorithm 
•  Start with an initial guess for the tree (perhaps 

made over the entire feature set using UPGMA) 
• Apply “Branch Swapping” to improve the 

parsimony score until there are no more swaps  
• Only evaluates a subset of all possible trees 
• Defines a neighbor of a tree as one reachable by a 

nearest neighbor interchange 
–  A rearrangement of the four subtrees defined by one 

internal edge 
–  Only three different rearrangements per edge 
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•  Start with an arbitrary tree and check its 
neighbors 

• Move to a neighbor if it provides the best 
improvement in parsimony score 

• No way of knowing if the result is the most 
parsimonious tree 

•  Could get stuck in local minimum 



• Are Perfect Phylogeny Trees possible? 
• Under what conditions can we construct a tree

 that explains every mutation in the most
 parsimonious way? 
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