Genome Rearrangements

How Good is Greedy?
We developed a SimpleReversalSort algorithm that sorts by extending its prefix on every iteration (n-1) steps.

On $\pi: 6\, 1\, 2\, 3\, 4\, 5$

- Flip 1: $1\, 6\, 2\, 3\, 4\, 5$
- Flip 2: $1\, 2\, 6\, 3\, 4\, 5$
- Flip 3: $1\, 2\, 3\, 6\, 4\, 5$
- Flip 4: $1\, 2\, 3\, 4\, 6\, 5$
- Flip 5: $1\, 2\, 3\, 4\, 5\, 6$

But it could have been sorted in two flips:

$\pi: 6\, 1\, 2\, 3\, 4\, 5$

- Flip 1: $5\, 4\, 3\, 2\, 1\, 6$
- Flip 2: $1\, 2\, 3\, 4\, 5\, 6$

We probably don't want to use this algorithm to estimate the reversal distance between two genomes.
Approximation Algorithms

- Today’s algorithms find *approximate* solutions rather than *optimal* solutions.
- The **approximation ratio** of an algorithm \mathcal{A} on input π is:

$$\frac{\mathcal{A}(\pi)}{\text{OPT}(\pi)}$$

where

- $\mathcal{A}(\pi)$ - solution produced by algorithm \mathcal{A}
- OPT(π) - optimal solution of the problem
Approximation Ratio/Performance Guarantee

- Approximation ratio (performance guarantee) of algorithm A: max approximation ratio over all inputs of size n

 - For a minimizing algorithm A (like ours):
 - Approx Ratio = $\max |\pi| = n \frac{A(\pi)}{OPT(\pi)} \geq 1.0$

 - For maximization algorithms:
 - Approx Ratio = $\min |\pi| = n \frac{A(\pi)}{OPT(\pi)} \leq 1.0$
Approximation Ratio

SimpleReversalSort(π)
1. for $i \leftarrow 1$ to $n - 1$
2. $j \leftarrow$ position of element i in π (i.e., $\pi_j = i$)
3. if $j \neq i$
4. $\pi \leftarrow \pi \rho(i, j)$
5. output π
6. if π is the identity permutation
7. return

Step 0: 6 1 2 3 4 5
Step 1: 1 6 2 3 4 5
Step 2: 1 2 6 3 4 5
Step 3: 1 2 3 6 4 5
Step 4: 1 2 3 4 6 5
Step 5: 1 2 3 4 5 6

Step 0: 6 1 2 3 4 5
Step 1: 5 4 3 2 1 6
Step 2: 1 2 3 4 5 6

A(π)? n-1 OPT(π)?

any better greedy algorithms?
New Idea: Adjacencies

\[\pi = \pi_1\pi_2\pi_3\ldots\pi_{n-1}\pi_n \]

- A pair of neighboring elements \(\pi_i \) and \(\pi_{i+1} \) are *adjacent* if
 \[\pi_{i+1} = \pi_i \pm 1 \]

- For example:
 \[\pi = 1 \ 9 \ 3 \ 4 \ 7 \ 8 \ 2 \ 6 \ 5 \]

- (3, 4) or (7, 8) and (6,5) are adjacent pairs
Breakpoints

Breakpoints occur between neighboring non-adjacent elements:

\[\pi = 1 \, 9 \, 3 \, 4 \, 7 \, 8 \, 2 \, 6 \, 5 \]

- Pairs \((1,9), (9,3), (4,7), (8,2)\) and \((2,5)\) define 5 breakpoints of permutation \(\pi\)

- \(b(\pi)\) - # breakpoints in permutation \(\pi\)
Extending Permutations

• One can place two elements $\pi_0 = 0$ and $\pi_{n+1} = n+1$ at the beginning and end of π respectively.

$\pi = 1 \underline{9} 3 4 7 8 2 6 5$

Extending with 0 and 10

$\pi = 0 \underline{1} 9 3 4 7 8 2 6 5 \underline{10}$

A new breakpoint was created after extending.

An extended permutation of n can have at most $(n+1)$ breakpoints, (n-1 between elements plus 2)
Reversal Distance and Breakpoints

- Breakpoints are the *bottlenecks* for sorting by reversals once they are removed, the permutation is sorted.
- Each "*useful*" reversal eliminates at least 1 and at most 2 breakpoints.
- Consider the following application of
 \(\text{SimpleReversalSort} (\text{Extend}(\pi)) \):

\[
\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5 \\
0 \ 2 \ 3 \ 1 \ 4 \ 6 \ 5 \ 7 \quad b(\pi) = 5 \\
0 \ 1 \ 3 \ 2 \ 4 \ 6 \ 5 \ 7 \quad b(\pi) = 4 \\
0 \ 1 \ 2 \ 3 \ 4 \ \overline{6} \ 5 \ 7 \quad b(\pi) = 2 \\
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \quad b(\pi) = 0
\]

\(b(\pi) \) required reversals \(\geq \frac{b(\pi)}{2} \)
Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(\pi)

1 while \(b(\pi) > 0 \)
2 Among all possible reversals, choose reversal \(\rho \) minimizing \(b(\pi \cdot \rho) \)
3 \(\pi \leftarrow \pi \cdot \rho(i, j) \)
4 output \(\pi \)
5 return

The “greedy” concept here is to reduce as many breakpoints as possible.

Does it always terminate?

What if no reversal reduces the number of breakpoints?

0 1 2 5 6 7 3 4 8 9
New Concept: **Strips**

- **Strip**: an interval between two consecutive breakpoints in a permutation
 - **Decreasing strip**: strip of elements in decreasing order (e.g. 6 5 and 3 2).
 - **Increasing strip**: strip of elements in increasing order (e.g. 7 8)

- A *single-element strip* can be declared either increasing or decreasing. We will choose to declare them as *decreasing* with exception of extension strips (with 0 and \(n+1\))
Reducing the Number of Breakpoints

Consider $\pi = 1 4 6 5 7 8 3 2$

$0 1 4 6 5 7 8 3 2 \quad b(\pi) = 5$

If permutation π contains at least one decreasing strip, then there exists a reversal ρ which decreases the number of breakpoints (i.e. $b(\pi \cdot \rho) < b(\pi)$).
Things to Consider

Consider \(\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2 \)

\[
0 \hspace{0.2cm} 1 \hspace{0.2cm} | \hspace{0.2cm} 4 \hspace{0.2cm} | \hspace{0.2cm} 6 \hspace{0.2cm} | \hspace{0.2cm} 5 \hspace{0.2cm} | \hspace{0.2cm} 7 \hspace{0.2cm} | \hspace{0.2cm} 8 \hspace{0.2cm} | \hspace{0.2cm} 3 \hspace{0.2cm} | \hspace{0.2cm} 2 \hspace{0.2cm} | \hspace{0.2cm} 9 \hspace{0.2cm} \quad b(\pi) = 5
\]

- Choose the decreasing strip with the smallest element \(k \) in \(\pi \)
 (it’ll always be the rightmost element of that strip)
- Find \(k - 1 \) in the permutation
 (it’ll always be flanked by a breakpoint)
- Reverse the segment between \(k \) and \(k-1 \)

Thus, removing the breakpoint flanking \(k-1 \)
Consider $\pi = 1\ 4\ 6\ 5\ 7\ 8\ 3\ 2$

Choose the decreasing strip with the smallest element k in π

(it’ll always be the rightmost element of that strip)

Find $k - 1$ in the permutation

(it’ll always be flanked by a breakpoint)

Reverse the segment between k and $k-1$
Things to Consider

Consider $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$

$0 \ 1 \ 2 \ 3 \ 8 \ 7 \ 5 \ 6 \ 4 \ 9 \ b(\pi) = 4$

- Choose the decreasing strip with the smallest element k in π
 (it’ll always be the rightmost element of that strip)
- Find $k - 1$ in the permutation
 (it’ll always be flanked by a breakpoint)
- Reverse the segment between k and $k-1$
Consider $\pi = 1 4 6 5 7 8 3 2$

- Choose the decreasing strip with the smallest element k in π

 (it’ll always be the rightmost element of that strip)

- Find $k - 1$ in the permutation

 (it’ll always be flanked by a breakpoint)

- Reverse the segment between k and $k-1$
Consider \(\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2 \)

- Choose the decreasing strip with the smallest element \(k \) in \(\pi \)
 (it’ll always be the rightmost element of that strip)
- Find \(k - 1 \) in the permutation
 (it’ll always be flanked by a breakpoint)
- Reverse the segment between \(k \) and \(k-1 \)
Consider $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$

$0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \ b(\pi) = 0$

- Choose the decreasing strip with the smallest element k in π
 (it’ll always be the rightmost element of that strip)
- Find $k - 1$ in the permutation
 (it’ll always be flanked by a breakpoint)
- Reverse the segment between k and $k - 1$
Things to Consider

Consider \(\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2\)

\[
\begin{array}{cccccccc}
0 & 1 & 4 & 6 & 5 & 7 & 8 & 3 & 9 \\
\hline
0 & 1 & 2 & 3 & 8 & 7 & 5 & 6 & 4 & 9 \\
\hline
0 & 1 & 2 & 3 & 4 & 6 & 5 & 7 & 8 & 9 \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

\(b(\pi) = 5\)
\(b(\pi) = 4\)
\(b(\pi) = 2\)
\(b(\pi) = 0\)

\(d(\pi) = 3\)

Does it work for any permutation?
If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).

However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.

Then the number of breakpoints will be reduced in the following steps.

$0 \quad 1 \quad 2 \quad 5 \quad 6 \quad 7 \quad 3 \quad 4 \quad 8 \quad 9$

$b(\pi) = 3$
If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).

However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.

Then the number of breakpoints will be reduced in the following steps.
• If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).

• However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.

• Then the number of breakpoints will be reduced in the following steps.

\[b(\pi) = 2 \]
Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

\[b(\pi) = 2 \]
If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).

However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.

Then the number of breakpoints will be reduced in the following steps.
ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(\pi)
1 while \(b(\pi) > 0 \)
2 if \(\pi \) has a decreasing strip
3 Among all possible reversals, choose reversal \(\rho \)
4 that minimizes \(b(\pi \cdot \rho) \)
5 else
6 Choose a reversal \(\rho \) that flips an increasing strip in \(\pi \)
7 \(\pi \leftarrow \pi \cdot \rho \)
8 output \(\pi \)
9 return
def improvedBreakpointReversalSort(seq):
 while hasBreakpoints(seq):
 increasing, decreasing = getStrips(seq)
 if len(decreasing) > 0:
 reversal = pickReversal(seq, decreasing)
 else:
 reversal = increasing[0]
 print seq, "reversal", reversal
 seq = doReversal(seq, reversal)
 print seq, "Sorted"
 return

3/28/16
Comp 555
Spring 2016
Performance

- ImprovedBreakPointReversalSort is an approximation algorithm with a performance guarantee of no worse than 4
 - It eliminates at least one breakpoint in every two steps; at most $2b(\pi)$ steps
 - Optimal algorithm eliminates at most 2 breakpoints in every step: $d(\pi) \geq b(\pi) / 2$
 - Approximation ratio:
 \[
 \frac{2b(\pi)}{d(\pi)} \leq \frac{2b(\pi)}{\frac{b(\pi)}{2}} = 4
 \]
 - Can we obtain a better performance guarantee?
A Better Approximation Ratio

- If there is a decreasing strip, the next reversal reduces $b(\pi)$ by at least one.
- The only bad case is when there is no decreasing strip, as then we need a reversal that does not reduce $b(\pi)$.
 - If we could always choose a reversal reducing $b(\pi)$ and, at the same time, yielding a permutation that again has at least one decreasing strip, the bad case would never occur.
 - If all reversals that reduce $b(\pi)$ create a permutation without decreasing strips, then there exists a reversal that reduces $b(\pi)$ by two?!
 - When the algorithm creates a permutation without a decreasing strip, the previous reversal must have reduced $b(\pi)$ by two.
- At most $b(\pi)$ reversals are needed.
- Approximation ratio: $\frac{b(\pi)}{d(\pi)} \leq \frac{b(\pi)}{b(\pi)} = 2$ correct?
Both are Greedy Algorithms

- **SimpleReversalSort**
 - Attempts to maximize \(\text{prefix}(\pi) \) at each step
 - Performance guarantee: \(\frac{n-1}{2} \)

- **ImprovedBreakPointReversalSort**
 - Attempts to reduce the number of breakpoints at each step
 - Performance guarantee: 2

Mouse (X chrom.)

[Diagram of Mouse chromosome with breakpoints]

Human (X chrom.)

[Diagram of Human chromosome with breakpoints]
Try it yourself

0 1 3 8 7 6 2 4 5 9 10