NoSQL
Document Databases

Weekend outage.

A P66l READING
= A 8OOk /S

Problem Set #5 is
due on Tuesday

Problem Set #3 is graded and
should be posted by Thursday

Comp 521 - Files and Databases Fall 2020 1

...o Q
000“

?Z\IOSQL Databases and Data Types

1. Document databases

= Structured text data - Hierarchical tree data structures
* typically J[SON, XML

2. Key-value stores:

= Can store any (text or binary) data
* often, if using JSON data, additional functionality is available

3. Columnar stores

= Rows that have many columns associated

with a row key
e can be written as JSON

Comp 521 - Files and Databases Fall 2020 2

...o Q
000“

Unstructured Data Formats

< DBinary Data
= often, we want to store objects (class instances)
= objects can be binary serialized (marshalled)
* and kept in a key-value store

= there are several popular serialization formats
* Protocol Buffers, Apache Thrift

& Structured Text Data
= JSON, BSON (Binary JSON)

* JSON is currently number one data format used on the Web
= XML: eXtensible Markup Language
= RDF: Resource Description Framework

Comp 521 - Files and Databases Fall 2020

?]S ON: Basic Information

+ Text-based open standard for data interchange
= Serializing and transmitting structured data

« JSON = JavaScript Object Notation

= Originally specified by Douglas Crockford in 2001
= Derived from JavaScript scripting language
= Uses conventions of the C-family of languages

+ Filename: *;json
+ Internet media (MIME) type: application/json
+ Language independent

Comp 521 - Files and Databases Fall 2020 http://www.json.org 4

'g s
JSON:Example

[{ A "list" of documents, that contains key-value pairs
“Bigui ai?ig; . 3175692, (dictionary) and lists of subdocuments.
"name": "Orange County", Realated data is "localized"
"state": "CA",
"deaths": [{"date": "2020-03-27", "count": 1}, {"date": "2020-04-02", "count": 1},
{"date": "2020-04-065", "count": 2}, {"date": "2020-04-07", "count": 1},
{"date": "2020-10-26", "count": 1}, {"date": "2020-10-27", "count": 5},
{"date": "2020-10-28", "count": 2}],
"cases": [{"date": "2020-01-26", "count": 1}, {"date": "2020-03-04", "count": 2},
{"date": "2020-63-09", "count": 2}, {"date": "2020-03-11", "count": 1},
{"date": "2020-10-26", "count": 152}, {"date": "2020-10-27", "count": 255},
{"date": "2020-10-28", "count": 233}]
}
{
"_id": 38019,
"name"” : "Cavalier County",
"state": "ND",
"population”: 3762,
"deaths": [{"date": "20208-03-27", "count": 1}, {"date": "2020-04-02", "count": 1},
{"date": "2020-04-85", "count": 2}, {"date": "2020-04-87", "count": 1},
{"date": "2020-10-26", "count": 1}, {"date": "2020-10-27", "count": 5},
{"date": "2020-10-28", "count": 2}],
"cases": [{"date": "2020-06-20", "count": 1}, {"date": "20208-06-22", "count": 1},
{"date": "2020-07-02", "count": 1}, {"date": "2020-87-85", "count": 1},
{"date": "2020-10-25", "count": 3}, {"date": "2020-10-27", "count": 1},
{"date": "2020-10-28", "count": 3}]
3]
Comp 521 - Files and Databases Fall 2020

..0 Q

'g e

Compared to a Relational DB

County

fips name

region cog

msa

Demographics

fips | year race

sex agelo

agehi

count

Comp 521 - Files and Databases

e Separate tables
e Normalization
e [Lots of Joins

Covid

cases deaths

[oX
Q)
(=
D

Fall 2020

...o Q
000“

?]SON: Data Types (1) '

« object - an unordered set of name+value pairs
= these pairs are called properties (members) of an
object

= syntax: { name: value, name: value, name: value, ...}
object

« array - an ordered collection of values (elements)
= syntax: [comma-separated values |

Comp 521 - Files and Databases Fall 2020 7

%y
JSON: Data Types (2)

« value - string in double quotes / number / true
or false (i.e., Boolean) / null / object / array

value

Comp 521 - Files and Databases Fall 2020 8

...o Q
000“

?]SON: Data Types (3)

« string - sequence of zero or more Unicode

characters, wrapped in double quotes
= Backslash escaping

Any UNICODE character except
" or \ or control character

quotation mark

reverse solidus

solidus

backspace

formfeed

newline

carriage return

horizontal tab

4 hexadecimal digits

Comp 521 - Files and Databases Fall 2020 9

..o Q

)¢

00

?]SON: Data Types (4)

< number - like a C, Python, or Java number
= Integer or float
= (ctal and hexadecimal formats are not used

number

Comp 521 - Files and Databases Fall 2020 10

%y
JSON Properties

< There are no comments in J[SON
= Originally, there was but they were removed for security

« No way to specify precision/size of numbers
= [t depends on the parser and the programming language

< There exists a standard “JSON Schema”

= A way to specify the schema of the data
= Field names, field types, required/optional fields, etc.
= JSON Schema is written in JSON, of course

* see example below

Comp 521 - Files and Databases Fall 2020 11

JSON Schema: Example

{
"$schema": "http://json-schema.org/schema#",
"type" : "0bj ect",
"properties": {
"conferences": {
lltypell : Ilarrayll,
"items": {
"‘type" : uobj ect" ;
"properties": {
"name": { "type": "string" },
"start": { "type": "string", "format": "date" },
"end": { "type": "string", "format": "date" },
llwebll : { "type" : "St ring" },
"price": { "type": "number" },
"currency": { "type" : "string",
uenumu : [IICZK"' "ysp" ; "EUR" ; "GBP"] },

"topics": {
Iltypell : IIa r.r.ayll :
"items": {
"type": "string"
}
b

Comp 521 - Files and Databases

§"\‘
"venue": {
"type": "object",
"properties": {
"name": { "type": "string" },
"location": {
"type": "object",
"properties": {
"lat": { "type": "number" },
"lon": { "type": "number" }
}
}
1 &
"required": ["name"]
}
}
"required": ["name", "start", "end",
Hweb", "orice™, *topics"]
}
}
}
}
Fall 2020 12

Document with [SON Schema Y

{
"conferences":
[
{

"name": "XML Prague 2015",
"start": "2015-02-13",
"end": "2015-02-15",
"web": "http://xmlprague.cz/",
"price": 120,
"currency": "EUR",
"topics": ["XML", "XSLT", "XQuery", "Big Data"l,

"venue": {
"name": "VSE Praha",
"location": { 0
i e “name": "DATAKON 2014",
} "start": "2014-09-25",
} "end": "2014-09-29",
}, "web": "http://www.datakon.cz/",

"price": 290,
"currency": "EUR",
"topics": ["Big Data", "Linked Data", "Open Data"]

Comp 521 - Files and Databases Fall 2020 13

}XML: Basic Information

« XML: eXtensible Markup Language
= W3C standard (since 1996)

o De81gned to be both human :éﬁTLversmn:“l.O"b
and machine readable <qanda seq="1">
<question>
Who was the forty-second
president of the U.S.A.?7
</question>
<answer>
« example: William Jefferson Clinton
</answer>
</qanda>

</qUiz>y‘

XML

CSR82 TP HAITRP PR IR ML Fall 2020 14

..o Q

'g o,
?XML: Features and Comparison

« Standard ways to specify XML document schema:
= DTD, XML Schema, etc.
= concept of Namespaces; XML editors (for given
schema)

+ Technologies for parsing: DOM, SAX
« Many associated technologies:
= XPath, XQuery, XSLT (transformation)
<« XML is good for configurations, meta-data, etc.
<« XML databases are mature, not considered NoSQL
« Currently, JSON format rules:

= compact, easier to write, meets most needs

Comp 521 - Files and Databases Fall 2020 15

..o Q

'g e,
! NoSQL Document Databases

« Basic concept of data: Document

+ Documents are self-describing pieces of data
= Hierarchical tree data structures

= Nested associative arrays (maps), collections, scalars
= XML, JSON (JavaScript Object Notation), BSON, ...

< Documents in a collection should be “similar”
= Their schema can differ

» Often: Documents stored as values of key-value
= Key-value stores where the values are examinable
= Building search indexes on various keys/fields

Comp 521 - Files and Databases Fall 2020 16

)¢

000“

/

Why Document Databases

<« XML and JSON are popular for data exchange
= Recently mainly J[SON

« Data stored in document DB can be used directly

+ Databases often store objects from memory

= Using RDBMS, we must do Object Relational Mapping
(ORM)
* ORMiis relatively demanding
= JSON is much closer to structure of memory objects

* It was originally for JavaScript objects
* Object Document Mapping (ODM) is faster

Comp 521 - Files and Databases Fall 2020 17

K 3
Document Databases

l >
‘ mongoDB ‘Qﬁen ‘DB

Couchpelan
RAVENDB g4}
terrastore
. amazon Posigrei L
DynamoDB — MS Azure
DocumentDB

Comp 521 - Files and Databases Fall 2020 18

.... Q
000“

Example: MongoDB

|

< Initial release: 2009
= Written in C++

- Open-SOUFCE name: "sue”, <«—— field: value
age: 26, <+—— field: value
= Cross-platform status: "A", <« field: value
groups: ["news”, "sports”] e—— field: value

<+ JSON documents

< Basic features:
= High performance — many indexes
= High availability — replication + eventual consistency +
automatic failover
= Automatic scaling —automatic sharding across the cluster
= MapReduce support

Comp 521 - Files and Databases Fall 2020 hitp://www.mongodb.orgl 1

\

000“

}MongoDB: Terminology

RDBMS MongoDB
database instance | MongoDB

instance
schema database
table collection
row document
rowid _id

Comp 521 - Files and Databases

< each JSON document:

= belongs to a collection
= has a field id

e unique within the collection

< each collection:
= belongs to a “database”

nd |

ag na

st ag name: "al”,
&1 st age: 18,
) ! gr status: "D",

i ' groups: ["politics”, "news”]
\
Collection
Fall 2020 20

...o Q
000“

Documents

% Use JSON for APl communication

< Internally: BSON
= Binary representation of JSON
= For storage and inter-server communication

< Document has a maximum size: 16MB (in BSON)

= Not to use too much RAM
= GridFS tool can divide larger files into fragments

Comp 521 - Files and Databases Fall 2020 21

...o Q
000“

Document Fields

<+ Every document must have field id
= Used as a primary key
= Unique within the collection
= |mmutable
= Any type other than an array
= (Can be generated automatically

% Restrictions on field names:

= The field names cannot start with the S character
e Reserved for operators

= The field names cannot contain the . character
e Reserved for accessing sub-fields

Comp 521 - Files and Databases Fall 2020

22

‘..o Q
°°.“

Database Schema

% Documents have flexible schema

= Collections do not enforce specific data structure
= |n practice, documents in a collection are similar

< Key decision of data modeling:
= References vs. embedded documents

= |n other words: Where to draw lines between aggregates
e Structure of data
e Relationships between data

Comp 521 - Files and Databases Fall 2020 23

Schema: Embedded Docs P

< Related data in a single document structure
= Documents can have subdocuments (in a field or array)

{
_id: <ObjectIdi1>,
username: "123xyz",

contact: { \
phone: "123-456-7890", >>Embﬂwedum-

email: "xyz@example.com”)/ document
3
access: { \
level: 5, > Embedded sub-
group: "dev” document
} /)

Comp 521 - Files and Databases Fall 2020 24

‘..o Q
°°.“

Schema: Embedded Docs (2)

< Denormalized schema
< Main advantage:
Manipulate related data in a single operation

< Use this schema when:
= One-to-one relationships: one doc “contains” the other
= One-to-many: if children docs have one parent document

< Disadvantages:
= Documents may grow significantly during the time

= Impacts both read/write performance
e Document must be relocated on disk if its size exceeds allocated space
e May lead to data fragmentation on the disk

Comp 521 - Files and Databases Fall 2020

25

Schema: References

% Links/references from one document to another

% Normalization of the schema

user document

contact document

{

vd

{
_id: <ObjectIdi1>,
username: "123xyz"

}

3

e

_id: <ObjectId2>,
user_id: <ObjectIdil>,
phone: "123-456-7890",
email: "xyz@example.com”

access document

Comp 521 - Files and Databases

}

N

_id: <ObjectId3>,
user_id: <ObjectIdi>,
level: 5,

group: "dev”

Fall 2020

26

...o Q

ySchema: References (2)

000“

<+ More flexibility than embedding

% Use references:

= When embedding would result in duplication of data
e and only insignificant boost of read performance

= To represent more complex many-to-many relationships
= To model large hierarchical data sets

< Disadvantages:

= Can require more roundtrips to the server
e Documents are accessed one by one

Comp 521 - Files and Databases Fall 2020

27

‘..o Q
°°."

Querying: Basics

<+ Mongo query language
<+ A MongoDB query:
= Targets a specific collection of documents
= Specifies criteria that identify the returned documents

= May include a projection to specify returned fields
= May impose limits, sort, orders, ...

< Basic query - all documents in the collection:

db.users.find () —— Like SELECT ~*
db.users.find({})

Comp 521 - Files and Databases Fall 2020 28

Querying: Example

Collection

{ age:

18 v

{ age:

28, e

{ age:

21 =k

{ age:

8B s

{ age:

18,

{ age:

38; s

{ age:

30 e

users

Query Criteria

db.users.find({ age: { $gt: 18 } }).sort({age: 1 })

Like SQL "WHERE"

{ age: 28, ...

{ age: 21, ...
ﬁ{age; 385 s ﬁ
Query Criteria ¥ age: 50, Modifier

{ age: 31, <o

Fall 2020

Comp 521 - Files and Databases

Modifier

{ age:

20y

{ age:

285 S

{ age:

-

{ age:

38,

{ age:

385 s

Results

29

Querying: Selection

db.1nventory.find({ type: "snacks" })

7/

% All documents from collection inventory where the type field
has the value snacks

db.inventory.find (
{ type: { $in: ['food', 'snacks'] } })

7/

% Allinventory docs where the type field is either food or snacks

db.1nventory.find (
{ type: 'food', price: { $lt: 9.95 } })
s All ... where the type field is food and the price is less than 9.95

Comp 521 - Files and Databases Fall 2020 30

...o Q
000“

Inserts

db.inventory.insert({ 1d: 10, type: "misc",
item: "card", gty: 15 })

% Inserts a document with three fields into collection inventory
= User-specified id field

db.1inventory.1insert (
{ type: "book", 1tem: "journal" })

% The database generates id field
S db.inventory.find ()

{ " 1d": ObjectId("58e209ecb3el68£1d3915300"),
type: "book", item: "journal" }

Comp 521 - Files and Databases Fall 2020 31

...o Q
000“

Updates

db.1nventory.update (
{ type: "book", i1tem : "journal" 1},
{ Sset: { gty: 10 } },
{ upsert: true })
* Finds all docs matching query
{ type: "book", item : "journal" }
* andsetsthefield { gty: 10 }

% upsert: true
= if no document in the inventory collection matches
= creates a new document (generated _id)
e t contains fields id, type, item, gty

Comp 521 - Files and Databases Fall 2020 32

'g o,
MapReduce

collection "accesses":

{
"user id": <ObjectId>,
"login time": <time the user entered the system>,
"logout time": <time the user left the system>,
"access type": <type of the access>

o

* How much time did each user spend logged in
= Counting just accesses of type “regular”

db.accesses.mapReduce (

function() { emit (this.user id, this.logout time - this.login time);

function (key, values) { return Array.sum(values); 1},
{
query: { access type: "regular" },
out: "access times"
}
)
Comp 521 - Files and Databases Fall 2020

I

33

‘..o Q
°°."

?MongoDB Indexes

< Indexes are the key for MongoDB performance
= Without indexes, MongoDB must scan every document in a
collection to select matching documents

< Indexes store some fields in easily accessible form
= Stores values of a specific field(s) ordered by the value

*

Defined per collection

< Purpose:

= To speed up common queries

= To optimize performance of other specific operations

Comp 521 - Files and Databases Fall 2020 34

Indexes: Example of Use

Collection Query Criteria

db.users.find({ score: { "$1t": 30 } })

I S S S (scorc: 1) Index

min 18 30 45 75 max
|
[
Y A 4

it (u | { (e |

score: 25, score: 56, score: 45, score: 75, score: 5, score: 4@, score: 18, score: 38,

: },.).,)),.) }..)

users

Comp 521 - Files and Databases Fall 2020 35

Indexes: Example of Use (2)

Collection Query Criteria Sort order

. v :

db.users.find({ score: { "$1t": 30 } }).sort({ score: -1 })

I S S S (scorc: 1) Index

min 18 30 45 75 max

users

% The index can be traversed in order to return sorted
results (without sorting)

Comp 521 - Files and Databases Fall 2020 36

Indexes: Example of Use (3)

Collection Query Criteria Projection

: 1 :

db.users.find({ score: { "$1t": 30 } }, { score: 1, _id: 0 })

I S S (scorc: 1) Index

min 18 30 45 75 max

<+ MongoDB does not need to inspect data outside of
the index to fulfill the query

Comp 521 - Files and Databases Fall 2020 37

‘..o Q
°°.“

Index Types

<+ Default: id
= Exists by default

e |f applications do not specify _id, it is created.
= Unique
» Single Field
= User-defined indexes on a single field of a document
Compound
= User-defined indexes on multiple fields
Multikey index

= To index the content stored in arrays
= Creates separate index entry for each array element

g

9

L)

*
<3

>
<

Comp 521 - Files and Databases Fall 2020 38

7_

Index Types (2)

collection
(- % |Index on score

4 field (ascending)

{ score: 1} Index s Compound Index
collction on userid
“ (ascending) AND
e score field

{ zip: "10036", ... },
{ zip: "94301", ...}

{ userid: 1, score: -1 } Index

% Multikey index on
the addr.zip field

{ "addr.zip": 1 } Index

Comp 521 - Files and Databases Fall 2020 39

‘..o Q
00."

yIndex Types (3)

Ordered Index

= B-Tree (see above)

< Hash Indexes
= Fast O(1) indexes the hash of the value of a field

e Only equality matches

<+ Geospatial Index

= 2dindexes = use planar geometry when returning results
e For data representing points on a two-dimensional plane

= 2sphere indexes = spherical (Earth-like) geometry
e For data representing longitude, latitude

Text Indexes
= Searching for string content in a collection

o
%

>

*

Comp 521 - Files and Databases Fall 2020 40

)¢

000“

’MongoDB : Behind the Curtain

** BSON format

< Distribution models
= Replication
= Sharding
= Balancing

<+ MapReduce
< Transactions
< Journaling

Comp 521 - Files and Databases Fall 2020

41

..

’BSON (Binary [SON) Format

< Binary-encoded serialization of JSON documents
= Representation of documents, arrays, JSON simple data
types + other types (e.g., date)

"\x16\x00\x00\x00\x02hello\x00

"hello": "world"
{"hello world"} \x06\x00\x00\x00world\x00\x00"

"\x31\x00\x00\x00\x04BSON\x00\x26\x00
\x00\x00\x020\x00\x08\x00\x00

{"BSON": ["awesome", \x00awesome\x00\x011\x00\x33\x33\x33

5. 05, 19861} - 33 3\x3 333
NF1LANZAONRTAZ\R00 22 x0T \x00\x00
\x00\x00"

Comp 521 - Files and Databases Fall 2020 hitp://www.bsonspec.ora/ - 45

BSON: Basic Types

<+ byte —1 byte (8-bits)

<« 1nt32 —4 bytes (32-bit signed integer)

<« 1nt64 — 8 bytes (64-bit signed integer)

<+ double — 8 bytes (64-bit IEEE 754 floating point)

Comp 521 - Files and Databases Fall 2020 hitp://www.bsonspec.org/ 43

%y
BSON Grammar

document ::= 1int32 e list "\x00"

< BSON document
< 1nt32 =total number of bytes in document

e list ::= element e list |

<+ Sequence of elements

http://www.bsonspec.ora/ 44

Comp 521 - Files and Databases Fall 2020

...o Q
000“

?BS ON Grammar (2)

element ::= "\x01" e name double

"\x02" e name string

|

| "\x03" e name document
| "\x04" e name document
|

"\x05" e name binary

e name ::= cstring

e Field key

cstring ::= (byte*) "\x00"

string ::= 1nt32 (byte¥*)
Comp 521 - Files and Databases Fall 2020

Floating point

UTF-8 string
Embedded document
Array

Binary data

1] \XOO"

etc....

45

A/
Data Replication

< Master/slave replication
as.e /Sa € Feplicatio Client Application
< Replica set = group of =

instances that host the Writes Reads
same data set
= primary (master) — handles .
all write operations

. Oy Q
= secondaries (slaves) — \\&"‘ oy,
apply operations from the N
primary so that they have -
econdary Secondary

the same data set

Comp 521 - Files and Databases Fall 2020 46

‘..o Q
°°.“

Replication: Read & Write

¢ Write operation:
1. Write operation is applied on the primary
2. Operation is recorded to primary’s oplog (operation log)
3. Secondaries replicate the oplog + apply the operations to
their data sets

<+ Read: All replica set members can accept reads

o By default, application directs its reads to the primary
e Guaranties the latest version of a document
e Decreases read throughput

o0 Read preference mode can be set
e See below

Comp 521 - Files and Databases Fall 2020 47

‘.000

\

°°“'

/

Replication: Read Modes

Read Preference Mode

Description

primary

operations read from the primary of the replica set

primaryPreferred

operations read from the primary, but if unavailable,
operations read from secondary members

secondary

operations read from the secondary members

secondaryPreferred

operations read from secondary members, but if
none is available, operations read from the primary

nearest

operations read from the nearest member (= shortest

ping time) of the replica set

Comp 521 - Files and Databases

Fall 2020

48

E — i\

Replica Set Elections

< |f the primary

becomes unavailable,
an election
determines a new
primary

= Elections need some

time
= No primary =>

)] ReEIication.
no writes - Heartbeat - Secondary

Comp 521 - Files and Databases Fall 2020 49

‘..o Q
°°.“

}Replica Set: CAP

< Let us have three nodes in the replica set

= Let’s say that the master is disconnected from the other two
e The distributed system is partitioned

= The master finds out, that it is alone
e Specifically, that can communicate with less than half of the nodes
e And it steps down from being master (handles just reads)

= The other two slaves “think” that the master failed
e Because they form a partition with more than half of the nodes
e And elect a new master

< In case of just two nodes in RS

= Both partitions will become read-only
e Similar case can occur with any even number of nodes in RS

= Therefore, we can always add an arbiter node to an even RS

Comp 521 - Files and Databases Fall 2020 50

Sharding

<+ MongoDB enables
collection partitioning
(sharding)

Shard A Shard B Shard C | Shard D

\ \ 56G| 56G\

Comp 521 - Files and Databases Fall 2020 51

Collection Partitioning

< Mongo partitions collection’s data by the shard key

= |ndexed field(s) that exist in each document in the collection
e |Immutable

= Divided into chunks, distributed across shards
e Range-based partitioning
e Hash-based partitioning

= When a chunk grows beyond

the size limit, it is split
e Metadata change, no data migration

< Data balancing:
= Background chunk migration

Comp 521 - Files and Databases Fall 2020 52

‘..o Q
°°.“

Sharding: Components y

< MongoDB runs in cluster of different node types:

< Shards — store the data

= Each shard is a replica set
e (Can be asingle node

* Query routers — interface with client applications

= Direct operations to the relevant shard(s)
e +return the result to the client

= More than one => to divide the client request load

*

Config servers — store the cluster’s metadata
= Mapping of the cluster’s data set to the shards
= Recommended number: 3

Comp 521 - Files and Databases Fall 2020 53

Sharding: Diagram

Router
(mongos)

Router
(mongos)

*®,
“.. Config Server
ik N Config Server |
I 4 < ==
JPCiat Config Server
‘4
/" 2 or more Shards ®

Shard Shard

(replica set) (replica set)

Comp 521 - Files and Databases Fall 2020 54

‘..o Q
°°.“

Journaling y

o
%

>

Write operations are applied in memory and into a

journal before done in the data files (on disk)
= To restore consistent state after a hard shutdown
= Can be switched on/off

< Journal directory — holds journal files

Journal file = write-ahead redo logs
= Append only file
= Deleted when all the writes are durable

= When size > 1GB of data, MongoDB creates a new file
e The size can be modified

< Clean shutdown removes all journal files

*

Comp 521 - Files and Databases Fall 2020 55

‘..o Q
°°.“

Transactions r

<+ Write ops: atomic at the level of single document

* [ncluding nested documents
= Sufficient for many cases, but not all
= When a write operation modifies multiple documents,

other operations may interleave

< Transactions:

= |solation of a write operation that affects multiple docs
db.foo.update({ fieldl : 1 , $isolated : 1 }, { $inc

{ field2 : 1 } } , { multi: true })

= Two-phase commit
e Multi-document updates

Comp 521 - Files and Databases Fall 2020

