
Comp 521 – Files and Databases Fall 2020 1

MapReduce
Paradigm

for Big Data

Delayed PS#4 deadline
until Thursday

PS#5 will be up tonight

Comp 521 – Files and Databases Fall 2020 2

Distrubuted "Big" Data
One motivation of NoSQL databases was to distribute
them across multiple network-connected servers
❖ Google MapReduce

▪ Motivation and History
▪ Google File System (GFS)
▪ MapReduce:

Schema, Example, MapReduce Framework
❖ Apache Hadoop

▪ Hadoop Modules and Related Projects
▪ Hadoop Distributed File System (HDFS)
▪ Hadoop MapReduce

❖ Apache Spark

Comp 521 – Files and Databases Fall 2020 3

Big Data
● Big Data analytics (or data mining)

○ need to process large data volumes quickly
○ want to use a computing cluster (with

distributed memory) instead of a
super-computer (shared memory)

● Communication (sending data) between
compute nodes is expensive

⇒ model of “move computing to data”

Comp 521 – Files and Databases Fall 2020 4

Big Data Processing
switch

racks with compute nodes

Computing cluster architecture:
 1,000s of computing nodes
 10,000s Gb of memory
 10,000s Tb of data storage

● HW failures are the rule rather than the exception,
thus
1. Files should be stored redundantly

■ over different racks to overcome also rack failures
2. Computations must be divided into independent tasks

■ that can be restarted in case of a failure

Comp 521 – Files and Databases Fall 2020 5

MapReduce: Origins
● In 2003, Google had the following problem:

1. How to rank tens of billions of webpages by their “importance”
(PageRank) in a “reasonable” amount of time?

2. How to compute these rankings efficiently when the data is
scattered across thousands of computers?

● Additional factors:
1. Individual data files can be enormous (terabyte or more)

2. The files were rarely updated
■ the computations were read-heavy, but not very write-heavy
■ If writes occurred, they were appended at the end of the file

Comp 521 – Files and Databases Fall 2020 6

Google's Solution
● Google found the following solutions:

○ Google File System (GFS)
■ A distributed file system

○ MapReduce
■ A simple programming model

for distributed data processing

Comp 521 – Files and Databases Fall 2020 7

Google File System (GFS)
● Files are divided into chunks (typically 64 MB)

○ The chunks are replicated at three different machines
○ The chunk size and replication factor are tunable

● One machine is a master,
the other chunkservers
○ The master keeps track

of all file metadata
■ mappings from files to chunks

and locations of the chunks
○ To find a file chunk, client

queries the master, and then
contacts the relevant chunkservers

○ The master’s metadata files are also replicated

Comp 521 – Files and Databases Fall 2020 8

MapReduce
❖ MapReduce is a programming model that sits

on the top of a Distributed File System
○ Originally: no data model – data is stored directly in files

❖ A distributed computational task has three phases:
1. The map phase: data transformation
2. The grouping phase

• done automatically by the MapReduce Framework
3. The reduce phase: data aggregation

❖ User defines only map & reduce functions

Comp 521 – Files and Databases Fall 2020 9

Map
❖ Map function simplifies the problem in this way:

▪ Input: a single data item (e.g. line of text) from a data file
▪ Output: zero or more (key, value) pairs

❖ The keys are similar to search “keys”:
▪ They do not have to be unique
▪ A map task can produce several key-value pairs

with the same key (even from a single input)
❖ Map phase applies the map function to all items

input data

map function

output data
 (color indicates key value)

Comp 521 – Files and Databases Fall 2020 10

Grouping Phase
❖ Grouping (Shuffling): The key-value outputs from

the map phase are grouped by key
▪ Values sharing the same key are sent to the same reducer
▪ These values are consolidated into a single list (key, list)

• This is convenient for the reduce function
▪ This phase is done automatically in the

MapReduce framework

intermediate output
 (color indicates key)

shuffle (grouping) phase

Comp 521 – Files and Databases Fall 2020 11

Reduce Phase
❖ Reduce: combines values with the same key

▪ to achieve the final result(s) of the computational task
▪ Input: (key, value-list)

• value-list contains all values generated for
given key in the Map phase

▪ Output: (key, value-list)
• zero or more output records

reduce function

output data

Comp 521 – Files and Databases Fall 2020 12

input data

map function

intermediate output
 (color indicates key)

input data

reduce function

output data

shuffle (grouping) phase

MapReduce, the full picture

Comp 521 – Files and Databases Fall 2020 13

Example: Word Count
Task: Calculate word frequency in a set of documents

def map(key, value):
 """ key: document name (ignored)
 value: content of document (words) """

for w in value.split(' '):
 emitIntermediate(w, 1)

def reduce(key, values):
 """ key: a word
 values: a list of counts """
 result = 0;
 for v in values:
 result += v
 emit(key, result)

Comp 521 – Files and Databases Fall 2020 14

Example: Word Count (2)

Comp 521 – Files and Databases Fall 2020 15

MapReduce: Combiner
❖ If the reduce function is commutative & associative

▪ The values can be combined in any order
and combined in parts (grouped)
• with the same result (e.g. Word Counts)

❖ … opportunities for optimization
▪ Apply the same reduce function right immediately after

the map phase, before shuffling and then distribute to
reducer nodes

❖ This (optional) step is known as the combiner
▪ Note: it’s still necessary to run the reduce phase

Comp 521 – Files and Databases Fall 2020 16

Example: Word Count, Combiner
Task: Calculate word frequency in a set of documents

def combine(keyValuePairs):
 """ keyValuePairs: a list counts """
 result = {}
 for k, v in keyValuePairs:
 result[k] = result.get(k,0) + v
 for k, v in result:
 emit(k, v);

Comp 521 – Files and Databases Fall 2020 17

 Word Count with Combiner

Comp 521 – Files and Databases Fall 2020 18

MapReduce Framework
❖ MapReduce framework takes care of

▪ Distributing and parallelizing of the computation
▪ Monitoring of the whole distributed task
▪ The grouping phase

• putting together intermediate results
▪ Recovering from any failures

❖ User defines only map & reduce functions
▪ but can define also other additional functions

Comp 521 – Files and Databases Fall 2020 19

MapReduce Framework

Shuffle
(keys mapped via hashing)

Distribute
(generally to nodes with local

copies of the input)

The Shuffle phase
generates the most of the
communitcation overhead

Comp 521 – Files and Databases Fall 2020 20

MapReduce: Example II
Task: Calculate graph of web links

❖ what pages reference () each page (backlinks)

def map(url, html):
 """ url: web page URL
 html: HTML text of the page """
 for tag, contents in html:
 if tag.type == 'a':
 emitIntermediate(tag.href, url)

def reduce(key, values):
 """ key: target URLs
 values: a list of source URLs """
 emit(key, values)

Comp 521 – Files and Databases Fall 2020 21

Example II: Result
Input: (page_URL, HTML_code)
("http://cnn.com", "<html>...link...</html>")
("http://nbc.com", "<html>...link...</html>")
("http://fox.com",
 "<html>... x...
 y...
 z... </html>")

Intermediate output after Map phase:
("http://cnn.com", "http://cnn.com")
("http://cnn.com", "http://nbc.com")
("http://cnn.com", "http://fox.com")
("http://nbc.com", "http://fox.com")
("http://fox.com", "http://fox.com")

Intermediate result after shuffle phase (the same as output after Reduce phase):
("http://cnn.com", ["http://cnn.com", "http://nbc.com", "http://fox.com"])
("http://nbc.com", ["http://fox.com"])
("http://fox.com", ["http://fox.com"])

Comp 521 – Files and Databases Fall 2020 22

MapReduce: Example III
Task: What are the lengths of words in the input text

❖ output = how many words are in the text for each length

def map(key, text):
 """ key: document name (ignored)
 text: content of document (words) """
 for w in text.split(' '):
 emitIntermediate(length(w), 1)

def reduce(key, values):
 """ key: a length
 values: a list of counts """
 result = 0;
 for v in values:
 result += v
 emit(key, result)

Same reduce
function as
wordcount

Comp 521 – Files and Databases Fall 2020 23

MapReduce: Features
❖ MapReduce uses a “shared nothing” architecture

▪ Nodes operate independently,
• nodes share no memory
• nodes need not share disk

▪ Common feature of many NoSQL systems

❖ Data is partitioned (sharded) and replicated
over many nodes
▪ Pro: Large number of read/write operations per second
▪ Con: Coordination problem – which nodes have my data,

and when?

Comp 521 – Files and Databases Fall 2020 24

Applicability of MapReduce
❖ MR is always applicable if the problem

is trivially parallelized

❖ Two problems:
1. The programming model is limited

(only two phases with a given schema)
2. There is no data model - it works on nebulous

“data chunks” that the application understands.

❖ Google’s answer to the 2nd problem was BigTable
○ The first column-family system (2005)
○ Subsequent systems: HBase (over Hadoop), Cassandra,...

Comp 521 – Files and Databases Fall 2020 25

Apache Hadoop
❖ Open-source MapReduce framework

▪ Implemented in Java
▪ Named for author's (Doug Cutting)

son's yellow toy elephant

❖ Able to run applications on
large clusters of commodity hardware
▪ Multi-terabyte data-sets
▪ Thousands of nodes

❖ A reimplementation and redesign of Google's
MapReduce and Google File System

web: http://hadoop.apache.org/

Comp 521 – Files and Databases Fall 2020 26

Hadoop: Modules
❖ Hadoop Common

▪ Common support functions for other Hadoop modules

❖ Hadoop Distributed File System (HDFS)
▪ Distributed file system
▪ High-throughput access to application data

❖ Hadoop YARN
▪ Job scheduling and cluster

resource management

❖ Hadoop MapReduce
▪ YARN-based system for

parallel data processing

source: https://goo.gl/NPuuJr

Comp 521 – Files and Databases Fall 2020 27

HDFS: Data Characteristics
❖ Assumes:

▪ Streaming data access
• files are read sequentially from the beginning to end

▪ Batch processing rather than interactive user access

❖ Very large data sets and files
❖ Write-once / read-many

▪ A file once created does not change often
▪ This assumption simplifies consistancy

❖ Typical applications for this model:
MapReduce, web-crawlers, data warehouses, …

Comp 521 – Files and Databases Fall 2020 28

HDFS: Basic Components
❖ Master/slave architecture
❖ HDFS exposes a file system namespace

▪ Files are internally split into blocks and distrubuted over
servers called "DataNodes"

▪ Blocks are relatively large (64 MB by default)

❖ NameNode - master server
▪ Manages the file system namespace

• Opening/closing/renaming files and directories
• Arbitrates file access

▪ Determines mapping of blocks to DataNodes

❖ DataNode - manages file blocks
▪ Block read/write/creation/deletion/replication
▪ Usually one per physical node

Comp 521 – Files and Databases Fall 2020 29

HDFS: Schema

NameNodeClient2

Client1

DataNode1 DataNode2 DataNode3 DataNode4 DataNoden

22
2

3

3
3

1 1

14 44

2 2

2

3 3

3

1 1

14 4
4

2
2

2

3

3

11
14 4

4

3 3

1 3 4 2

 1' 2' 4' 2'R

Comp 521 – Files and Databases Fall 2020 30

HDFS: NameNode
❖ NameNode has a structure called FsImage

▪ Entire file system namespace + mapping of blocks to files +
file system properties

▪ Stored in a file in NameNode’s local file system
▪ Designed to be compact

• Loaded in NameNode’s memory (4 GB of RAM is sufficient)

❖ NameNode uses a transaction log called EditLog
▪ to record every change to the file system’s meta data

• E.g., creating a new file, change in replication factor of a file, ..

▪ EditLog is stored in the NameNode’s local file system

Comp 521 – Files and Databases Fall 2020 31

HDFS: DataNode
❖ Stores data blocks as files on its local file system

▪ Each HDFS block is a separate file
▪ Has no knowledge about HDFS file system

❖ When the DataNode starts up:
▪ It generates a list of all HDFS blocks = BlockReport
▪ It sends the report to NameNode

Comp 521 – Files and Databases Fall 2020 32

HDFS: Blocks & Replication
❖ HDFS can store very large files across a cluster

▪ Each file is a sequence of blocks
▪ All blocks in the file are of the same size

• Except the last one
• Block size is configurable per file (default 128MB)
• Use of large files promotes high I/O throughput

▪ Blocks are replicated for fault tolerance
• Number of replicas is configurable per file

❖ NameNode receives HeartBeat and BlockReport from
each DataNode

▪ BlockReport: list of all blocks on a DataNode

Comp 521 – Files and Databases Fall 2020 33

HDFS: Block Replication

Comp 521 – Files and Databases Fall 2020 34

HDFS: Reliability
❖ Primary objective: to store data reliably in case of:

▪ NameNode failure
▪ DataNode failure
▪ Network partition

• a subset of DataNodes can lose connectivity with NameNode

❖ NameNode expects a periodic HeartBeat
message from every datanode.

❖ In case of absence of a HeartBeat message
▪ NameNode marks DataNodes without HeartBeat and does not

send any I/O requests to them
▪ A long period w/o a heartbeat from a DataNode

typically results in re-replication
▪ Tells another datanode with a replicate of the dead node's

datablock to send a copy to some other "live" datanode

Comp 521 – Files and Databases Fall 2020 35

Hadoop: MapReduce
❖ Hadoop MapReduce requires:

▪ Distributed file system (typically HDFS)
▪ Engine that can distribute, coordinate, monitor and gather

the results (typically YARN)

❖ Two main components:
▪ JobTracker (master) = scheduler

• tracks the whole MapReduce job
• communicates with HDFS NameNode to run the task close to the data

▪ TaskTracker (slave on each node) – is assigned a Map or
a Reduce task (or other operations)

• Each task runs in its own JVM

Comp 521 – Files and Databases Fall 2020 36
source: http://www.dineshonjava.com/2014/11/hadoop-architecture.html#.WLU6aBLyso8

Comp 521 – Files and Databases Fall 2020 37

Next time

● A shallow dive into the Hadoop Eco system

● Primarily, Pig and Hive

