MapReduce

Paradigm o
for Big Data E e /

The dea of this perturbs :
my delicate sensibilites
1o no end.

Delayed PS#4 deadline
until Thursday

PS#5 will be up tonight

s

Comp 521 - Files and Databases Fall 2020 1

Distrubuted "Big" Data

One motivation of NoSQL databases was to distribute
them across multiple network-connected servers
% Google MapReduce

» Motivation and History

» Google File System (GFS)

= MapReduce:

Schema, Example, MapReduce Framework

% Apache Hadoop

» Hadoop Modules and Related Projects

» Hadoop Distributed File System (HDEFES)

» Hadoop MapReduce
% Apache Spark

Comp 521 - Files and Databases Fall 2020

e Big Data analytics (or data mining)

o need to process large data volumes quickly

o want to use a computing cluster (with
distributed memory) instead of a
super-computer (shared memory)

e Communication (sending data) between
compute nodes is expensive

— model of “move computing to data”

Comp 521 - Files and Databases Fall 2020

\

Big Data Processing
Computing cluster architecture: /Sw“ch
1,000s of computing nodes
10,000s Gb of memory
10,0005 Tb Of data Storage racks with compute nodes

e HW failures are the rule rather than the exception,

thus
1. Files should be stored redundantly

m over different racks to overcome also rack failures

2. Computations must be divided into independent tasks
m that can be restarted in case of a failure

Comp 521 - Files and Databases Fall 2020 4

...o Q
000“

MapReduce: Origins
e In 2003, Google had the following problem:

1. How to rank tens of billions of webpages by their “importance”
(PageRank) in a “reasonable” amount of time?

2. How to compute these rankings efficiently when the data is
scattered across thousands of computers?

e Additional factors:

1. Individual data files can be enormous (terabyte or more)

2. The files were rarely updated
m the computations were read-heavy, but not very write-heavy
m If writes occurred, they were appended at the end of the file

Comp 521 - Files and Databases Fall 2020

/
Google's Solution

e Google found the following solutions:

3 repllca(?)on m S
. e scheme Nwrite 2 c
o Google File System (GFS) T e o
A distributed file syst p"'maruseeaﬁ 08 S
- istributed file system ppartlcularconwrrtem l 8-89
_— quelrean IIF(I)En O gc s“fecn e
arcngﬁsétu“re &;ng.;- £if 0 =
5l i | I SYS t em 8.- e
nnnnnnnn conttrOIB 5 ;;aerGoogledata e
wen.- SEparation) £ secessea
S0 EUESHONS T e
eeeeeeeeee O stored cac records equential information
§ N caching akpicatons

o MapReduce = |

m A simple programming model
for distributed data processing

Comp 521 - Files and Databases Fall 2020

...o Q
000“

Google File System (GFS)

e Files are divided into chunks (typically 64 MB)

o The chunks are replicated at three different machines
o The chunk size and replication factor are tunable

e One machine is a master,

Master - ;
the other chunkservers saE A [e]
0 The master keeps track Ciient mwzam‘i | |

of all file metadata TSR rccas B s
m mappings from files to chunks | ("ééd/'»;r;,»;-};s-zuffg?fu il NEE
and locations of the chunks ~ | UnxPs || UniFs

o To find a file chunk, client
queries the master, and then
contacts the relevant chunkservers
o The master’s metadata files are also replicated

Comp 521 - Files and Databases Fall 2020 7

..o Q

v
MapReduce

% MapReduce is a programming model that sits
on the top of a Distributed File System

o Oiriginally: no data model - data is stored directly in files

% A distributed computational task has three phases:
1. The map phase: data transformation
2. The grouping phase

* done automatically by the MapReduce Framework

3. The reduce phase: data aggregation

% User defines only map & reduce functions

Comp 521 - Files and Databases Fall 2020 8

Map

% Map function simplifies the problem in this way:
= Input: a single data item (e.g. line of text) from a data file
* Output: zero or more (key, value) pairs

% The keys are similar to search “keys”:

* They do not have to be unique
* A map task can produce several key-value pairs
with the same key (even from a single input)

% Map phase applies the map function to all items

input data

@ @ @ @ @ @ @ map function

00 O Q o OO o ® output Qatg

() (color indicates key value)

O O ¢ OO

Comp 521 - Files and Databases Fall 2020

..o Q

v
Grouping Phase

% Grouping (Shutfling): The key-value outputs from
the map phase are grouped by key

* Values sharing the same key are sent to the same reducer

= These values are consolidated into a single list (key, list)
* This is convenient for the reduce function

= This phase is done automatically in the
MapReduce framework

00 O OO OO o ® intermediate output
o0 (color indicates key)

O O e 00
@ @ @ shuffle (grouping) phase
00000 OO0 | OO0000

Comp 521 - Files and Databases Fall 2020 10

Reduce Phase

% Reduce: combines values with the same key
= to achieve the final result(s) of the computational task
= Input: (key, value-list)
* value-list contains all values generated for
given key in the Map phase
* Output: (key, value-list)

* zero or more output records

Q00000 OOOO||OOOOOOQ| reduce function

@ @ @ output data

000 OO OO0

Comp 521 - Files and Databases Fall 2020 11

\

MapReduce, the full picture

v

0O®

v

OO0 <=

AR
Y

00000 COOO||OCOO0O00O
000 o0 OO0
Comp 521 - Files and Databases

Fall 2020

input data
map function

intermediate output
(color indicates key)

shuffle (grouping) phase

input data
reduce function

output data

12

%y

Example: Word Count

Task: Calculate word frequency in a set of documents

def map (key, wvalue):
""" key: document name (ignored)
value: content of document (words) """
for w in value.split (' '"):
emitIntermediate(w, 1)

def reduce (key, wvalues):
"o key: a word
values: a list of counts """
result = 0;
for v in values:
result += v
emit (key, result)

Comp 521 - Files and Databases Fall 2020 13

!gxample: Word Count (2) F

Input Splitting Mapping Shuffling Reducing Final result

Comp 521 - Files and Databases Fall 2020 14

..o Q

v
MapReduce: Combiner

« If the reduce function is commutative & associative
* The values can be combined in any order

and combined in parts (grouped)
* with the same result (e.g. Word Counts)

% ... opportunities for optimization

* Apply the same reduce function right immediately after
the map phase, before shuffling and then distribute to
reducer nodes

% This (optional) step is known as the combiner
= Note: it’s still necessary to run the reduce phase

Comp 521 - Files and Databases Fall 2020 15

Example: Word Count, Combiner

Task: Calculate word frequency in a set of documents

def combine (keyValuePairs) :
""" keyValuePairs: a list counts """
result = {}
for k, v 1n keyValuePairs:
result[k] = result.get(k,0) + v
for k, v in result:
emit (k, v);

Comp 521 - Files and Databases Fall 2020 16

Word Count with Combiner

(B.2)
€n -
(0.2)

(0.2)
(A2)
€n L
(B.1)

(AB) (B1)
(AL) (€
(AD) (0.1)
= |(BE) (ED
2 |B.D) o)
(€B) (8.1)
o —
@ |(DA)
o | I |
(EB) | . (B.D)
(ED) (0.1)

Comp 521 - Files and Databases

Fall 2020

(ED) [

(A [2))
(B, [21])
(€, nm
(0. 12,2])
(E. D)

(A2)
(B,3)
(€.2)
(D.4)
(E1)

17

..o Q

v

MapReduce Framework

% MapReduce framework takes care of
Distributing and parallelizing of the computation
* Monitoring of the whole distributed task

The grouping phase

* putting together intermediate results
Recovering from any failures

% User defines only map & reduce functions
= but can define also other additional functions

Comp 521 - Files and Databases Fall 2020 18

User
Program

The Shuffle phase
generates the most of the

5, communitcation overhead
: o O s,

1) fork .* :
(1) or.. A 1) fork

Distribute @ " assign
(generally to nodes with local i ‘ as‘sign reduce .

copies of the input) % . map
Splft 0 (6) write output
G (5) remote read @ file O
split 2 () read _ (4) local write
split 3 e output

file 1
split 4
el
Shuffle
(keys mapped via hashing)

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Comp 521 - Files and Databases Fall 2020 19

'g Qs
MapReduce: Example 11

Task: Calculate graph of web links
* what pages reference () each page (backlinks)

def map (url, html):
""" yurl: web page URL
html: HTML text of the page """
for tag, contents in html:
if tag.type == 'a':
emitIntermediate (tag.href, url)

def reduce (key, values):
""" key: target URLs
values: a list of source URLs """
emit (key, values)

Comp 521 - Files and Databases Fall 2020 20

)¢

yExczmple II: Result

Input: (page URL, HTML code)

("http://cnn.com", "<html>...1link...</html>")
("http://nbc.com", "<html>...1link...</html>")
("http://fox.com",

"<html>... x...
y...
z... </html>")

Intermediate output after Map phase:

("http://cnn.com", "http://cnn.com")
"http://cnn.com", "http://nbc.com")
"http://cnn.com", "http://fox.com")
"http://nbc.com™, "http://fox.com")
"http://fox.com", "http://fox.com")

Intermediate result after shuffle phase (the same as output after Reduce phase):
("http://cnn.com", ["http://cnn.com", "http://nbc.com", "http://fox.com"])
("http://nbc.com", ["http://fox.com" 1)

("http://fox.com", ["http://fox.com" 1)

Comp 521 - Files and Databases Fall 2020 21

'g Qs
MapReduce: Example 111

Task: What are the lengths of words in the input text
* output = how many words are in the text for each length

def map (key, text):
""" key: document name (i1gnored)
text: content of document (words) """
for w in text.split (' '"):
emitIntermediate (length(w), 1)

Same reduce
Function as
wordcount

)

def reduce (key, wvalues):
"""t o key: a length \2
values: a list of counts """
result = 0;
for v in wvalues:
result += v
emit (key, result)

Comp 521 - Files and Databases Fall 2020

22

...o Q
000“

MapReduce: Features '

<+ MapReduce uses a “shared nothing” architecture

= Nodes operate independently,
e nodes share no memory
e nodes need not share disk

= Common feature of many NoSQL systems

< Data is partitioned (sharded) and replicated

over many nodes
= Pro: Large number of read/write operations per second
= Con: Coordination problem — which nodes have my data,
and when?

Comp 521 - Files and Databases Fall 2020 23

..0 Q

)¢

00

yA;o;tolicczbiliify of MapReduce

%+ MR is always applicable if the problem
is trivially parallelized

% Two problems:
1. The programming model is limited
(only two phases with a given schema)
2. There is no data model - it works on nebulous
“data chunks” that the application understands.

% Google’s answer to the 2nd problem was BigTable
o The first column-family system (2005)
o Subsequent systems: HBase (over Hadoop), Cassandra,...

Comp 521 - Files and Databases Fall 2020 24

‘..o Q
°°.“

Apache Hadoop

< Open-source MapReduce framework
= |mplemented in Java
= Named for author's (Doug Cutting)

son's yellow toy elephant y 20
Q ‘} — a a a

o Able to run app||cat|ons on web: http://hadoop.apache.org/

large clusters of commodity hardware
= Multi-terabyte data-sets
= Thousands of nodes

<+ A reimplementation and redesign of Google's
MapReduce and Google File System

Comp 521 - Files and Databases Fall 2020 25

‘ e,
’Hadoop: Modules &

<+ Hadoop Common
= Common support functions for other Hadoop modules

<+ Hadoop Distributed File System (HDFS)

= Distributed file system
= High-throughput access to application data

<+ Hadoop YARN

= Job scheduling and cluster
resource management MapReduce Others

(data processing) - (data processing)
<+ Hadoop MapReduce A

= YARN-based system for YARN

(cluster resource management)

parallel data processing

) source: https://goo.gl/NPuudr
Comp 521 - Files and Databases Fall 2020 26

‘..o Q
°°.“

?HDFS: Data Characteristics

% Assumes:

- Streaming data access
e files are read sequentially from the beginning to end

= Batch processing rather than interactive user access
<+ Very large data sets and files
< Write-once / read-many

= A file once created does not change often

= This assumption simplifies consistancy

< Typical applications for this model:
MapReduce, web-crawlers, data warehouses, ...

Comp 521 - Files and Databases Fall 2020 27

...o Q
000“

HDES: Basic Components

< Master/slave architecture

<+ HDFS exposes a file system namespace
= Files are internally split into blocks and distrubuted over
servers called "DataNodes"
= Blocks are relatively large (64 MB by default)

<+ NameNode - master server

= Manages the file system namespace
e Opening/closing/renaming files and directories
e Arbitrates file access

= Determines mapping of blocks to DataNodes

< DataNode - manages file blocks
= Block read/write/creation/deletion/replication
= Usually one per physical node

Comp 521 - Files and Databases Fall 2020 28

.‘

’HDFS: Schema

NameNode J

| 7
v VAR Vi

DataNode, DataNode DataNode, DataNode, DataNode

i | 2 | | E "

3L [+ <] |2 + |4
E 2 B 3 (R

7
N ~ %\

N

ST~

NIl ||w
/

Comp 521 - Files and Databases Fall 2020 29

...o Q
000“

HDFS: NameNode

<+ NameNode has a structure called Fsimage

= Entire file system namespace + mapping of blocks to files +

file system properties
= Stored in a file in NameNode’s local file system

= Designed to be compact
e Loaded in NameNode’s memory (4 GB of RAM is sufficient)

<+ NameNode uses a transaction log called EditLog

= to record every change to the file system’s meta data
e E.g., creating a new file, change in replication factor of a file, ..

= EditLog is stored in the NameNode’s local file system

Comp 521 - Files and Databases Fall 2020

30

R/
L X4

R/
0’0

}HDFS: DataNode

Stores data blocks as files on its local file system
= Each HDFS block is a separate file
= Has no knowledge about HDFS file system

When the DataNode starts up:

= |t generates a list of all HDFS blocks = BlockReport
= |t sends the report to NameNode

Comp 521 - Files and Databases Fall 2020

31

‘..o Q
°°.“

?HDFS: Blocks & Replication

< HDFS can store very large files across a cluster
= Each file is a sequence of blocks

= All blocks in the file are of the same size
e Except the last one
e Block size is configurable per file (default 128MB)
e Use of large files promotes high 1/0O throughput

= Blocks are replicated for fault tolerance
e Number of replicas is configurable per file

<+ NameNode receives HeartBeat and BlockReport from
each DataNode

= BlockReport: list of all blocks on a DataNode

Comp 521 - Files and Databases Fall 2020 32

HDEFS: Block Replication P

Data is divided into 128 MB per
block.

Metadata
HDFS stores files in a

number of blocks.
NameNode

...

‘NodeA
(o e &2 | &

Very large I8+ -l 2 W -
data file K -
Node B - Node E
=

Each block is replicated
to a few separate
computers.

Comp 521 - Files and Databases Fall 2020 33

‘.‘o Q
00."

?HDFS: Reliability

<+ Primary objective: to store data reliably in case of:

= NameNode failure
= DataNode failure

= Network partition
e asubset of DataNodes can lose connectivity with NameNode

<+ NameNode expects a periodic HeartBeat
message from every datanode.

< In case of absence of a HeartBeat message
= NameNode marks DataNodes without HeartBeat and does not

send any I/O requests to them
= Along period w/o a heartbeat from a DataNode

typically results in re-replication
= Tells another datanode with a replicate of the dead node's

datablock to send a copy to some other "live" datanode
Comp 521 - Files and Databases Fall 2020

34

‘..o Q
°°."

Hadoop: MapReduce

<+ Hadoop MapReduce requires:
= Distributed file system (typically HDFS)
= Engine that can distribute, coordinate, monitor and gather
the results (typically YARN)

< Two main components:

= JobTracker (master) = scheduler
e tracks the whole MapReduce job
e communicates with HDFS NameNode to run the task close to the data

= TaskTracker (slave on each node) —is assigned a Map or

a Reduce task (or other operations)
e Each task runsinits own JVM

Comp 521 - Files and Databases Fall 2020 35

@Apache Hadoop Ecosystem

Ambari
fé?? Provisioning, Managing and Monitoring Hadoop Clusters
7w o 7]
ol 1 € g
Q 3 = §) > n_m
24 sl 2|l 32| £l . ElkX
g 3 " 2| =2|| 58 @O s
@ & S| wel 83| S3|| 22| 3
2 a n 2 2 [+ v X N A
& . 0 £
. @ YARN Map Reducev2 || § £
|| 8§ Distributed Processing Framework || £ 3
0S|l §8
ES 5 'g HDFS @
é g 3 & || Hadoop Distributed File System

source; http://www.dineshongava.com/2014/11/hadoop-architecture html#.WLU6aBLyso8

Comp 521 - Files and Da

.ht
abases Fall 2020

36

)¢

J

Next time

e A shallow dive into the Hadoop Eco system

e Primarily, Pig and Hive

Comp 521 - Files and Databases Fall 2020

37

