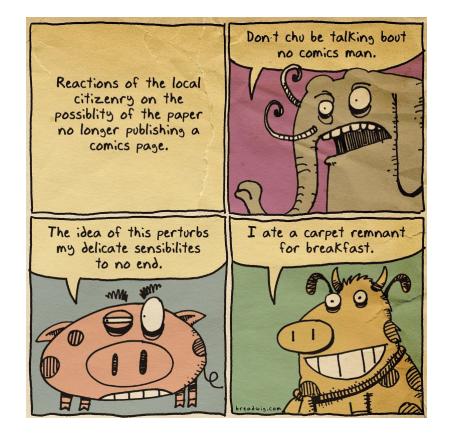


MapReduce Paradigm for Big Data

Delayed PS#4 deadline until Thursday

PS#5 will be up tonight



Distrubuted "Big" Data

One motivation of NoSQL databases was to distribute them across multiple network-connected servers

- Google MapReduce
 - Motivation and History
 - Google File System (GFS)
 - MapReduce:

Schema, Example, MapReduce Framework

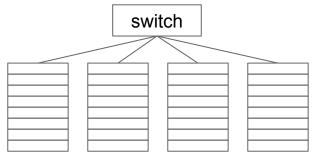
- Apache Hadoop
 - Hadoop Modules and Related Projects
 - Hadoop Distributed File System (HDFS)
 - Hadoop MapReduce
- Apache Spark

- Big Data analytics (or data mining)
 - need to process large data volumes quickly
 - want to use a computing cluster (with distributed memory) instead of a super-computer (shared memory)
- Communication (sending data) between compute nodes is expensive

\Rightarrow model of "move computing to data"

Big Data Processing

Computing cluster architecture: 1,000s of computing nodes 10,000s Gb of memory 10,000s Tb of data storage



racks with compute nodes

- HW failures are the rule rather than the exception, thus
 - 1. Files should be stored redundantly
 - over different racks to overcome also rack failures
 - 2. Computations must be divided into independent tasks
 - that can be restarted in case of a failure

MapReduce: Origins

- In 2003, Google had the following problem:
 - How to rank tens of billions of webpages by their "importance" (PageRank) in a "reasonable" amount of time?
 - 2. How to compute these rankings efficiently when the data is scattered across thousands of computers?
- Additional factors:
 - 1. Individual data files can be enormous (terabyte or more)
 - 2. The files were rarely updated
 - the computations were **read-heavy**, but not very write-heavy
 - If writes occurred, they were appended at the end of the file

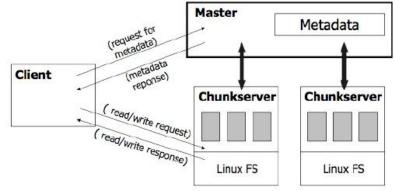
Google's Solution

- Google found the following solutions:
 - Google File System (GFS)
 - A distributed file system

- MapReduce
 - A *simple* programming *model* for distributed data processing

Google File System (GFS)

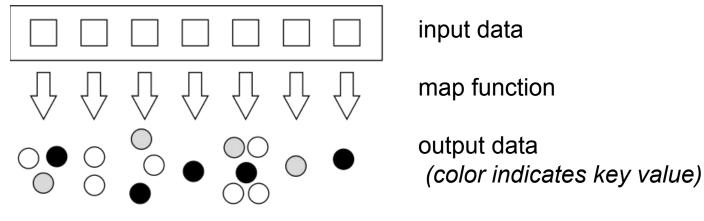
- Files are divided into chunks (typically 64 MB)
 - The chunks are replicated at three different machines
 - The chunk size and replication factor are tunable
- One machine is a master, the other chunkservers
 - The master keeps track of all file metadata
 - mappings from files to chunks and locations of the chunks
 - To find a file chunk, client queries the master, and then contacts the relevant chunkservers
 - The master's metadata files are also replicated



- MapReduce is a programming model that sits
 on the top of a Distributed File System
 Originally: no data model data is stored directly in files
- * A distributed computational task has three phases:
 - 1. The map phase: data transformation
 - 2. The grouping phase
 - done automatically by the MapReduce Framework
 - 3. The reduce phase: data aggregation
- User defines only *map* & *reduce* functions

Map function simplifies the problem in this way:

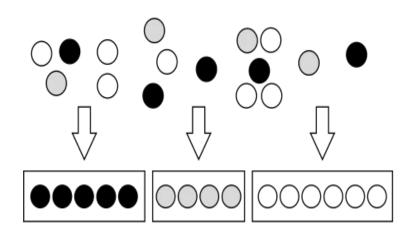
- Input: a single data item (e.g. line of text) from a data file
- Output: zero or more (key, value) pairs
- The keys are similar to search "keys":
 - They do not have to be unique
 - A map task can produce several key-value pairs with the same key (even from a single input)
- Map phase applies the map function to all items



Comp 521 – Files and Databases

Fall 2020

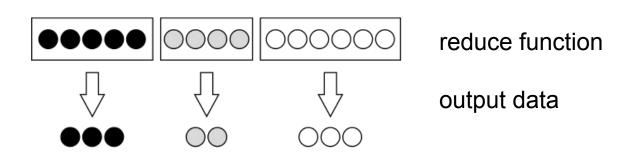
- Grouping (Shuffling): The key-value outputs from the map phase are grouped by key
 - Values sharing the same key are sent to the same reducer
 - These values are consolidated into a single list (key, list)
 - This is convenient for the reduce function
 - This phase is done automatically in the MapReduce framework

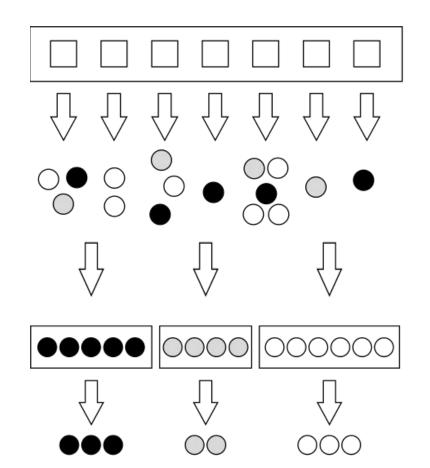


intermediate output (color indicates key)

shuffle (grouping) phase

- ✤ Reduce: combines values with the same key
 - to achieve the final result(s) of the computational task
 - Input: (key, value-list)
 - value-list contains all values generated for given key in the Map phase
 - Output: (key, value-list)
 - zero or more output records





input data

map function

intermediate output (color indicates key)

shuffle (grouping) phase

input data

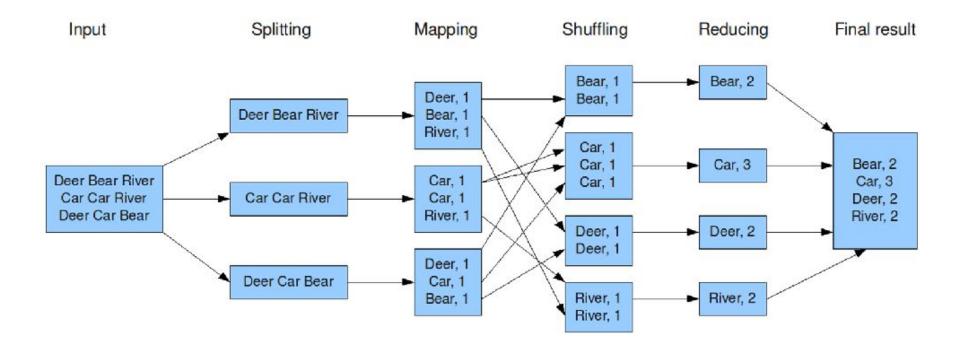
reduce function

output data

Task: Calculate word frequency in a set of documents

```
def map(key, value):
     """ key: document name (ignored)
         value: content of document (words)
                                               11 11 11
    for w in value.split(' '):
        emitIntermediate(w, 1)
def reduce(key, values):
    """ key: a word
        values: a list of counts
                                   ** ** **
    result = 0;
    for v in values:
        result += v
    emit(key, result)
```

Example: Word Count (2)



Fall 2020

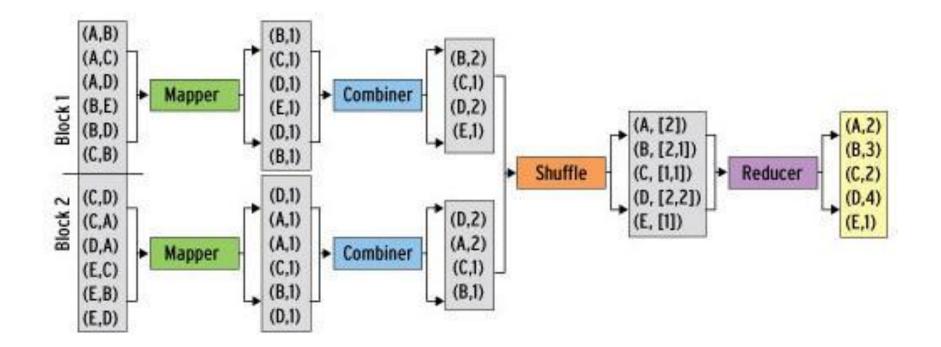
- If the reduce function is commutative & associative
 - The values can be combined in any order and combined in parts (grouped)
 - with the same result (e.g. Word Counts)
- ... opportunities for optimization
 - Apply the same reduce function right immediately after the map phase, before shuffling and then distribute to reducer nodes
- This (optional) step is known as the combiner
 - Note: it's still necessary to run the reduce phase

Example: Word Count, Combiner

Task: Calculate word frequency in a set of documents

```
def combine(keyValuePairs):
    """ keyValuePairs: a list counts """
    result = {}
    for k, v in keyValuePairs:
        result[k] = result.get(k,0) + v
    for k, v in result:
        emit(k, v);
```

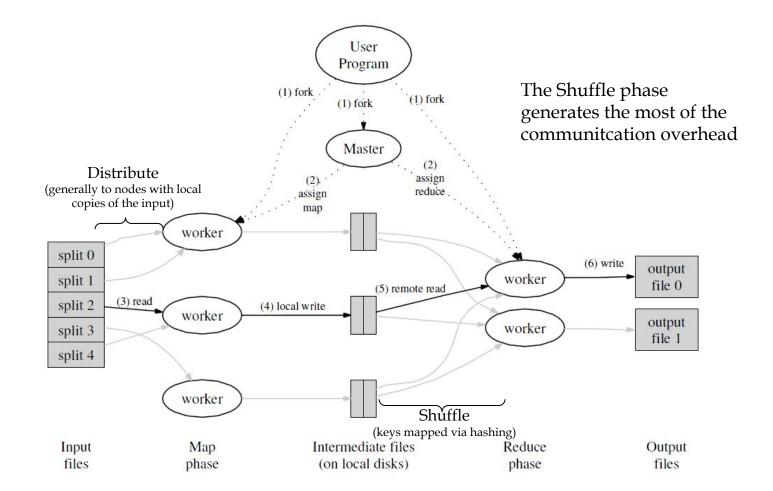

Word Count with Combiner



Fall 2020

MapReduce Framework

- MapReduce framework takes care of
 - Distributing and parallelizing of the computation
 - Monitoring of the whole distributed task
 - The grouping phase
 - putting together intermediate results
 - Recovering from any failures
- User defines only map & reduce functions
 - but can define also other additional functions



Fall 2020

Task: Calculate graph of web links

what pages reference () each page (backlinks)

```
def map(url, html):
    """ url: web page URL
    html: HTML text of the page """
    for tag, contents in html:
        if tag.type == 'a':
            emitIntermediate(tag.href, url)
```

```
def reduce(key, values):
    """ key: target URLs
        values: a list of source URLs """
    emit(key, values)
```

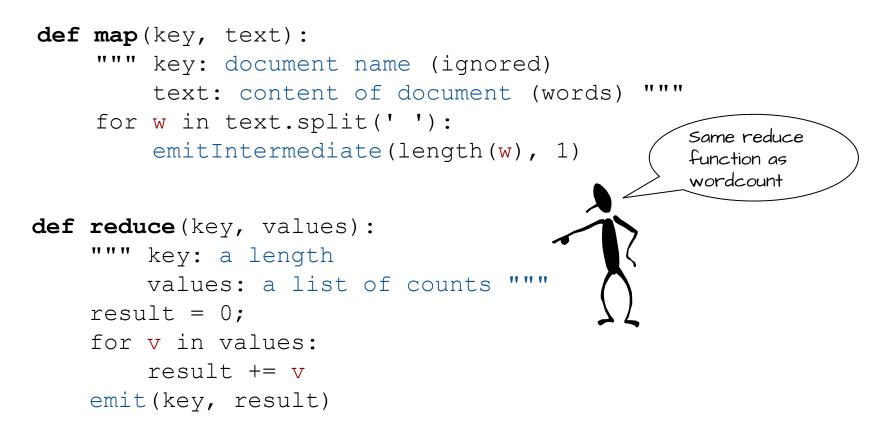

Intermediate output after Map phase:

("http://cnn.com",	"http://cnn.com")
("http://cnn.com",	"http://nbc.com")
("http://cnn.com",	"http://fox.com")
("http://nbc.com",	"http://fox.com")
("http://fox.com",	"http://fox.com")

Intermediate result after shuffle phase (the same as output after Reduce phase):

```
("http://cnn.com", ["http://cnn.com", "http://nbc.com", "http://fox.com"] )
("http://nbc.com", [ "http://fox.com" ])
("http://fox.com", [ "http://fox.com" ])
```


Task: What are the lengths of words in the input text • output = how many words are in the text for each length



- MapReduce uses a "shared nothing" architecture
 - Nodes operate independently,
 - nodes share no memory
 - nodes need not share disk
 - Common feature of many NoSQL systems
- Data is partitioned (sharded) and replicated over many nodes
 - Pro: Large number of read/write operations per second
 - Con: Coordination problem which nodes have my data, and when?

Applicability of MapReduce

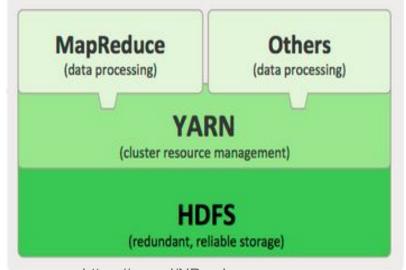
- MR is always applicable if the problem is trivially parallelized
- Two problems:
 - The programming model is limited (only two phases with a given schema)
 - 2. There is no data model it works on nebulous "data chunks" that the application understands.
- Google's answer to the 2nd problem was BigTable
 - The first column-family system (2005)
 - Subsequent systems: HBase (over Hadoop), Cassandra,...

- Open-source MapReduce framework
 - Implemented in Java
 - Named for author's (Doug Cutting) son's yellow toy elephant
- Able to run applications on weth large clusters of commodity hardware
 - Multi-terabyte data-sets
 - Thousands of nodes
- A reimplementation and redesign of Google's MapReduce and Google File System

Comp 521 – Files and Databases

web: http://hadoop.apache.org/

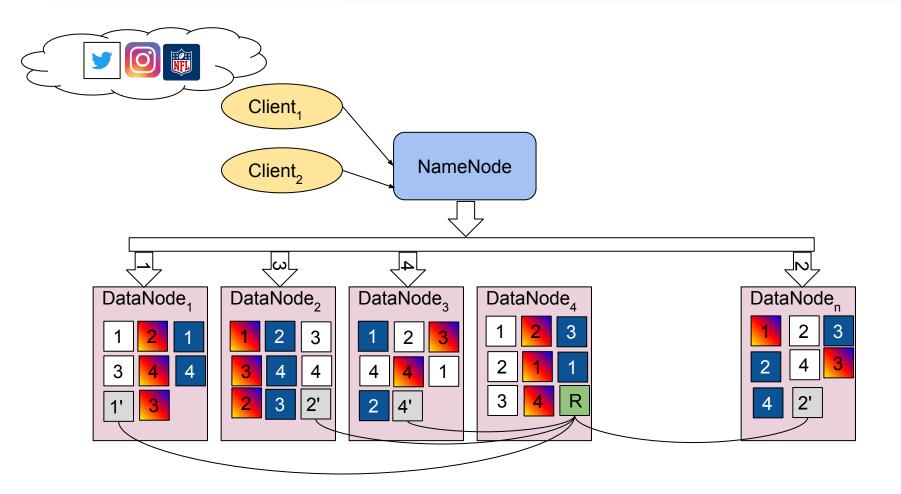
- Hadoop Common
 - Common support functions for other Hadoop modules
- Hadoop Distributed File System (HDFS)
 - Distributed file system
 - High-throughput access to application data
- Hadoop YARN
 - Job scheduling and cluster resource management
- Hadoop MapReduce
 - YARN-based system for parallel data processing



- Assumes:
 - Streaming data access
 - files are read sequentially from the beginning to end
 - Batch processing rather than interactive user access
- Very large data sets and files
- Write-once / read-many
 - A file once created does not change often
 - This assumption simplifies consistancy
- Typical applications for this model:
 MapReduce, web-crawlers, data warehouses, ...

HDFS: Basic Components

- Master/slave architecture
- HDFS exposes a file system namespace
 - Files are internally split into blocks and distrubuted over servers called "DataNodes"
 - Blocks are relatively large (64 MB by default)
- NameNode master server
 - Manages the file system namespace
 - Opening/closing/renaming files and directories
 - Arbitrates file access
 - Determines mapping of blocks to DataNodes
- DataNode manages file blocks
 - Block read/write/creation/deletion/replication
 - Usually one per physical node



- NameNode has a structure called FsImage
 - Entire file system namespace + mapping of blocks to files + file system properties
 - Stored in a file in NameNode's local file system
 - Designed to be compact
 - Loaded in NameNode's memory (4 GB of RAM is sufficient)

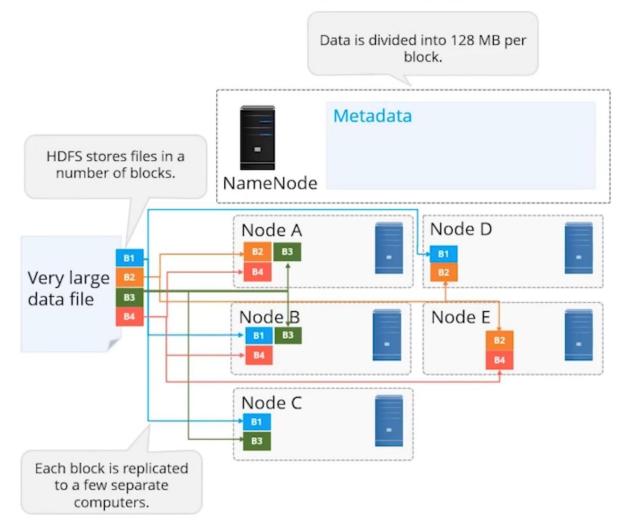
- NameNode uses a transaction log called EditLog
 - to record every change to the file system's meta data
 - E.g., creating a new file, change in replication factor of a file, ..
 - EditLog is stored in the NameNode's local file system

- Stores data blocks as files on its local file system
 - Each HDFS block is a separate file
 - Has no knowledge about HDFS file system
- When the DataNode starts up:
 - It generates a list of all HDFS blocks = BlockReport
 - It sends the report to NameNode

HDFS: Blocks & Replication

- HDFS can store very large files across a cluster
 - Each file is a sequence of blocks
 - All blocks in the file are of the same size
 - Except the last one
 - Block size is configurable per file (default 128MB)
 - Use of large files promotes high I/O throughput
 - Blocks are replicated for fault tolerance
 - Number of replicas is configurable per file
- NameNode receives HeartBeat and BlockReport from each DataNode
 - BlockReport: list of all blocks on a DataNode

HDFS: Block Replication



Comp 521 – Files and Databases

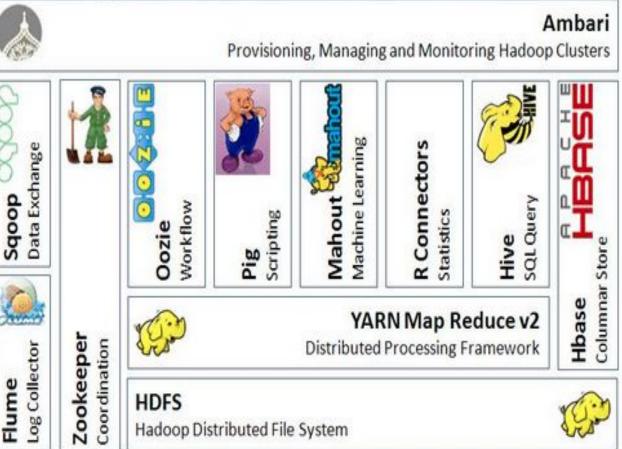
- Primary objective: to store data reliably in case of:
 - NameNode failure
 - DataNode failure
 - Network partition
 - a subset of DataNodes can lose connectivity with NameNode
- NameNode expects a periodic HeartBeat message from every datanode.
- In case of absence of a HeartBeat message
 - NameNode marks DataNodes without HeartBeat and does not send any I/O requests to them
 - A long period w/o a heartbeat from a DataNode typically results in re-replication
 - Tells another datanode with a replicate of the dead node's datablock to send a copy to some other "live" datanode

Comp 521 - Files and Databases

Hadoop: MapReduce

- Hadoop MapReduce requires:
 - Distributed file system (typically HDFS)
 - Engine that can distribute, coordinate, monitor and gather the results (typically YARN)
- Two main components:
 - JobTracker (master) = scheduler
 - tracks the whole MapReduce job
 - communicates with HDFS NameNode to run the task close to the data
 - TaskTracker (slave on each node) is assigned a Map or a Reduce task (or other operations)
 - Each task runs in its own JVM

Apache Hadoop Ecosystem



- A shallow dive into the Hadoop Eco system
- Primarily, Pig and Hive

