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MapReduce
Paradigm

for Big Data

Delayed PS#4 deadline  
until Thursday

PS#5 will be up tonight
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Distrubuted "Big" Data
One motivation of NoSQL databases was to distribute 
them across multiple network-connected servers
❖ Google MapReduce

▪ Motivation and History
▪ Google File System (GFS)
▪ MapReduce: 

Schema, Example, MapReduce Framework
❖ Apache Hadoop

▪ Hadoop Modules and Related Projects
▪ Hadoop Distributed File System (HDFS)
▪ Hadoop MapReduce

❖ Apache Spark
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Big Data
● Big Data analytics (or data mining)

○ need to process large data volumes quickly
○ want to use a computing cluster (with 

distributed memory) instead of a 
super-computer (shared memory)

● Communication (sending data) between 
compute nodes is expensive

⇒ model of “move computing to data”
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Big Data Processing
switch

racks with compute nodes

Computing cluster architecture:
    1,000s of computing nodes
  10,000s Gb of memory
  10,000s Tb of  data storage

● HW failures are the rule rather than the exception, 
thus
1. Files should be stored redundantly

■ over different racks to overcome also rack failures
2. Computations must be divided into independent tasks

■ that can be restarted in case of a failure
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MapReduce: Origins
● In 2003, Google had the following problem:

1. How to rank tens of billions of webpages by their “importance” 
(PageRank) in a “reasonable” amount of time?

2. How to compute these rankings efficiently when the data is 
scattered across thousands of computers?

● Additional factors:
1. Individual data files can be enormous (terabyte or more)

2. The files were rarely updated
■ the computations were read-heavy, but not very write-heavy
■ If writes occurred, they were appended at the end of the file
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Google's Solution
● Google found the following solutions:

○ Google File System (GFS)
■ A distributed file system

○ MapReduce
■ A simple programming model 

for distributed data processing
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Google File System (GFS)
● Files are divided into chunks (typically 64 MB)

○ The chunks are replicated at three different machines
○ The chunk size and replication factor are tunable

● One machine is a master, 
the other chunkservers
○ The master keeps track 

of all file metadata 
■ mappings from files to chunks 

and locations of the chunks
○ To find a file chunk, client 

queries the master, and then 
contacts the relevant chunkservers

○ The master’s metadata files are also replicated
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MapReduce
❖ MapReduce is a programming model that sits

on the top of a Distributed File System
○ Originally: no data model – data is stored directly in files

❖ A distributed computational task has three phases:
1. The map phase: data transformation
2. The grouping phase

• done automatically by the MapReduce Framework
3. The reduce phase: data aggregation

❖ User defines only map & reduce functions



Comp 521 – Files and Databases                                       Fall 2020 9

Map
❖ Map function simplifies the problem in this way:

▪ Input: a single data item (e.g. line of text) from a data file
▪ Output: zero or more (key, value) pairs

❖ The keys are similar to search “keys”:
▪ They do not have to be unique
▪ A map task can produce several key-value pairs 

with the same key (even from a single input)
❖ Map phase applies the map function to all items

input data

map function

output data
 (color indicates key value)
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Grouping Phase
❖ Grouping (Shuffling): The key-value outputs from 

the map phase are grouped by key
▪ Values sharing the same key are sent to the same reducer
▪ These values are consolidated into a single list (key, list)

• This is convenient for the reduce function
▪ This phase is done automatically in the 

MapReduce framework

intermediate output
 (color indicates key)

shuffle (grouping) phase
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Reduce Phase
❖ Reduce: combines values with the same key 

▪ to achieve the final result(s) of the computational task
▪ Input: (key, value-list)

• value-list contains all values generated for 
given key in the Map phase

▪ Output: (key, value-list)
• zero or more output records

reduce function

output data
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input data

map function

intermediate output
 (color indicates key)

input data

reduce function

output data

shuffle (grouping) phase

MapReduce, the full picture
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Example: Word Count
Task: Calculate word frequency in a set of documents

def map(key, value):
    """ key: document name (ignored)
        value: content of document (words) """

for w in value.split(' '):
       emitIntermediate(w, 1)

def reduce(key, values):
    """ key: a word
        values: a list of counts """
    result = 0;
    for v in values:
        result += v
    emit(key, result)
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Example: Word Count (2)
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MapReduce: Combiner
❖ If the reduce function is commutative & associative

▪ The values can be combined in any order 
and combined in parts (grouped)
• with the same result (e.g. Word Counts)

❖ … opportunities for optimization
▪ Apply the same reduce function right immediately after 

the map phase, before shuffling and then distribute to 
reducer nodes

❖ This (optional) step is known as the combiner
▪ Note: it’s still necessary to run the reduce phase
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Example: Word Count, Combiner
Task: Calculate word frequency in a set of documents

def combine(keyValuePairs):
    """ keyValuePairs: a list counts """
    result = {}
    for k, v in keyValuePairs:
        result[k] = result.get(k,0) + v
    for k, v in result:
    emit(k, v);
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  Word Count with Combiner
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MapReduce Framework
❖ MapReduce framework takes care of

▪ Distributing and parallelizing of the computation
▪ Monitoring of the whole distributed task
▪ The grouping phase

• putting together intermediate results
▪ Recovering from any failures

❖ User defines only map & reduce functions
▪ but can define also other additional functions
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MapReduce Framework

Shuffle 
(keys mapped via hashing)

Distribute
(generally to nodes with local 

copies of the input)

The Shuffle phase 
generates the most of the 
communitcation overhead



Comp 521 – Files and Databases                                       Fall 2020 20

MapReduce: Example II
Task: Calculate graph of web links

❖ what pages reference (<a href=””>) each page (backlinks)

def map(url, html):
    """ url: web page URL
        html: HTML text of the page """
    for tag, contents in html:
        if tag.type == 'a':
            emitIntermediate(tag.href, url)

def reduce(key, values):
    """ key: target URLs
        values: a list of source URLs """
    emit(key, values)
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Example II: Result
Input: (page_URL, HTML_code)
("http://cnn.com", "<html>...<a href="http://cnn.com">link</a>...</html>") 
("http://nbc.com", "<html>...<a href="http://cnn.com">link</a>...</html>")  
("http://fox.com", 
   "<html>... <a href="http://cnn.com">x</a>... 
              <a href="http://nbc.com">y</a>...
              <a href="http://fox.com">z</a>... </html>")  

Intermediate output after Map phase: 
("http://cnn.com", "http://cnn.com")
("http://cnn.com", "http://nbc.com") 
("http://cnn.com", "http://fox.com") 
("http://nbc.com", "http://fox.com") 
("http://fox.com", "http://fox.com") 
 

Intermediate result after shuffle phase (the same as output after Reduce phase): 
("http://cnn.com", ["http://cnn.com", "http://nbc.com", "http://fox.com"] )
("http://nbc.com", [ "http://fox.com" ]) 
("http://fox.com", [ "http://fox.com" ]) 
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MapReduce: Example III
Task: What are the lengths of words in the input text

❖ output = how many words are in the text for each length

def map(key, text):
    """ key: document name (ignored)
        text: content of document (words) """
    for w in text.split(' '):
        emitIntermediate(length(w), 1)

def reduce(key, values):
    """ key: a length
        values: a list of counts """
    result = 0;
    for v in values:
        result += v
    emit(key, result)

Same reduce 
function as 
wordcount
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MapReduce: Features
❖ MapReduce uses a “shared nothing” architecture

▪ Nodes operate independently, 
• nodes share no memory
• nodes need not share disk

▪ Common feature of many NoSQL systems

❖ Data is partitioned (sharded) and replicated 
over many nodes
▪ Pro: Large number of read/write operations per second
▪ Con: Coordination problem – which nodes have my data, 

and when?
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Applicability of MapReduce
❖ MR is always applicable if the problem 

is trivially parallelized
 

❖ Two problems:
1. The programming model is limited 

(only two phases with a given schema)
2. There is no data model - it works on nebulous 

“data chunks” that the application understands.

❖ Google’s answer to the 2nd problem was BigTable
○ The first column-family system (2005)
○ Subsequent systems: HBase (over Hadoop), Cassandra,...
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Apache Hadoop
❖ Open-source MapReduce framework

▪ Implemented in Java
▪ Named for author's (Doug Cutting)

son's yellow toy elephant

❖ Able to run applications on 
large clusters of commodity hardware 
▪ Multi-terabyte data-sets 
▪ Thousands of nodes 

❖ A reimplementation and redesign of Google's 
MapReduce and Google File System

web: http://hadoop.apache.org/



Comp 521 – Files and Databases                                       Fall 2020 26

Hadoop: Modules
❖ Hadoop Common

▪ Common support functions for other Hadoop modules

❖ Hadoop Distributed File System (HDFS)
▪ Distributed file system 
▪ High-throughput access to application data

❖ Hadoop YARN
▪ Job scheduling and cluster 

resource management

❖ Hadoop MapReduce
▪ YARN-based system for 

parallel data processing

source: https://goo.gl/NPuuJr
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HDFS: Data Characteristics
❖ Assumes:

▪ Streaming data access 
• files are read sequentially from the beginning to end

▪ Batch processing rather than interactive user access

❖ Very large data sets and files
❖ Write-once / read-many

▪ A file once created does not change often
▪ This assumption simplifies consistancy

❖ Typical applications for this model: 
MapReduce, web-crawlers, data warehouses, …
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HDFS: Basic Components
❖ Master/slave architecture
❖ HDFS exposes a file system namespace

▪ Files are internally split into blocks and distrubuted over 
servers called "DataNodes"

▪ Blocks are relatively large (64 MB by default)

❖ NameNode - master server 
▪ Manages the file system namespace

• Opening/closing/renaming files and directories 
• Arbitrates file access

▪ Determines mapping of blocks to DataNodes 

❖ DataNode - manages file blocks
▪ Block read/write/creation/deletion/replication
▪ Usually one per physical node 
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HDFS: Schema
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HDFS: NameNode
❖ NameNode has a structure called FsImage

▪ Entire file system namespace + mapping of blocks to files + 
file system properties

▪ Stored in a file in NameNode’s local file system
▪ Designed to be compact 

• Loaded in NameNode’s memory (4 GB of RAM is sufficient)

❖ NameNode uses a transaction log called EditLog 
▪ to record every change to the file system’s meta data

• E.g., creating a new file, change in replication factor of a file, ..

▪ EditLog is stored in the NameNode’s local file system
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HDFS: DataNode
❖ Stores data blocks as files on its local file system

▪ Each HDFS block is a separate file
▪ Has no knowledge about HDFS file system

❖ When the DataNode starts up:
▪ It generates a list of all HDFS blocks = BlockReport
▪ It sends the report to NameNode
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HDFS: Blocks & Replication
❖ HDFS can store very large files across a cluster

▪ Each file is a sequence of blocks
▪ All blocks in the file are of the same size

• Except the last one
• Block size is configurable per file (default 128MB)
• Use of large files promotes high I/O throughput

▪ Blocks are replicated for fault tolerance
• Number of replicas is configurable per file

❖ NameNode receives HeartBeat and BlockReport from 
each DataNode

▪ BlockReport: list of all blocks on a DataNode
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HDFS: Block Replication
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HDFS: Reliability
❖ Primary objective: to store data reliably in case of:

▪ NameNode failure
▪ DataNode failure 
▪ Network partition

• a subset of DataNodes can lose connectivity with NameNode

❖ NameNode expects a periodic HeartBeat 
message from every datanode.

❖ In case of absence of a HeartBeat message
▪ NameNode marks DataNodes without HeartBeat and does not 

send any I/O requests to them
▪ A long period w/o a heartbeat from a DataNode 

typically results in re-replication 
▪ Tells another datanode with a replicate of the dead node's 

datablock to send a copy to some other "live" datanode 
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Hadoop: MapReduce
❖ Hadoop MapReduce requires: 

▪ Distributed file system (typically HDFS)
▪ Engine that can distribute, coordinate, monitor and gather 

the results (typically YARN)

❖ Two main components:
▪ JobTracker (master) = scheduler

• tracks the whole MapReduce job
• communicates with HDFS NameNode to run the task close to the data

▪ TaskTracker (slave on each node) – is assigned a Map or 
a Reduce task (or other operations)

• Each task runs in its own JVM
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source: http://www.dineshonjava.com/2014/11/hadoop-architecture.html#.WLU6aBLyso8
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Next time

● A shallow dive into the Hadoop Eco system

● Primarily, Pig and Hive


