Intro to NoS QL WOHY ARE Yo KOSHER AND I'M NOT?

PS #4 due next Tuesday

PS #5 will be issued tonight

HMMMMM MMMMM.....
AN EXCELLENT QUESTON, INDEED -
LET ME CHEW THE CUD ON IT

The CARTOON KRONICLES

Comp 521 - Files and Databases Fall 2020 1

‘..o Q
°°.“

Structured vs Unstructured

Data can be broadly classified into types:

1. Structured data:
Conforms to a predefined model, which organizes data into a
form that is relatively uniform and, thus, easy to store, process,
retrieve and manage. (e.g. rows with common attribuites
(relational data))

2. Unstructured data:
Opposite of structured data. BLOBs of bits. Irregular and
data-dependent attributes.
(e.g. flat binary files containing text, video, or audio)

Note: data is not completely devoid of a structure (e.g., an audio
file may still have an encoding structure and some metadata
associated with it, text often has abstracts, intros, and references.

Comp 521 - Files and Databases Fall 2020 2

..o Q

\

Dynamic vs. Static

Data can be classified by temporal properties
Dynamic Data:
Data that changes relatively frequently
e.g., How many steps Joe has walked today, live
statistics of a sporting event, or financial object,
how many cases reported today?

Static Data:

Opposite of dynamic data
e.g., Medical imaging data from MRI or CT scans
Historical demographic records

Comp 521 - Files and Databases Fall 2020 3

.000

g e

Data Classifications

Segmenting data according to one of the following 4 quadrants can
help in designing, developing, and maintaining effective data
storage and search solutions

Dynamic Static
Structured | Bank Transactions, Historical Sports Statistics,
Finanical Statistics College Transcripts

Live video streams, On-line
Unstructured | shared documents,
Message Feeds

Archived YouTube videos,
Warehoused medical data

Relational databases were designed for structured data, and suffers
from scalability isses when data is dynamic.

File systems or NoSQL databases are more often used for (static),
unstructured data (more on these later)

Comp 521 - Files and Databases Fall 2020 4

‘..o Q
°°."

Scaling Issues of Data Access

Traditional DBMSs can be either scaled:

% Vertically (or Up)
= Achieved by hardware upgrade
(e.g., faster CPUs, more memory, or larger disks)
= Limited by the amount of CPU, RAM and disk and

network bandwitdh available to a single machine
% Horizontally (or Out)

= Can be achieved by adding more servers (machines)

= Requires distributing databases and probably replication
* Distribute tables to different machines
* Distrbute rows of tables to different machines
« Distrbute columns of tables to different machines

= Limited by the Read-to-Write ratio and communication

overhead

Comp 521 - Files and Databases Fall 2020

Distributing Rows

Performance can be achieved by distributing the rows
of tables across multiple DBMS servers. This is called
sharding. Sharding provides concurrent/parallel access,
but the final results need to be combined or merged.

¥ R

Machine 1 Machine 3

¥

Chunkl of input data Chunk?2 of input data Chunk3 of input data

Chunk4 of input data Chunk5 of input data Chunk6 of input data

E.g., Chunks 1, 5, and 3 can be queried in parallel

Comp 521 - Files and Databases Fall 2020 6

‘..o Q
°°.“

Computational Limits

Recall Amdahl's Law...

Suppose that the sequential execution of a program takes T, time
units and the parallel execution on p processors/machines takes Tp
time units

Suppose that out of the entire execution of the program, some
fraction, s, is not parallelizable (s is for serial) while 1-s fraction is
parallelizable.

Then the speedup by Amdahl’s formula:

T T _ 1
1-S

Tp (Tl XS+T1 X ?) S+ T

Comp 521 - Files and Databases Fall 2020 7

‘.‘o Q
°°“'

An Example

= Suppose that:
= 60% of your query can be parallelized

* 6 machines are used in the parallel components of
the tuple selection

* The speedup you can get according to Amdahl’s
law is:

= 2.0

S+ —

1
0.6
- 0.4+ 98

Although you use 6 processors your
speedup is only 2 times!

Comp 521 - Files and Databases Fall 2020

..o Q

'g s,

Communication & Imbalance

e Inreality, Amdahl’s argument is over simplified
e Communication overheads and workload imbalance
also impact parallel programs

serial %0 80 serial 20 80
Parallel' 20 ' 20 ____.---="""" Parallel! 20 ' 20 .
Process 1 Process 1 e :
! : Cannot be parallelized :
1 : .
Process 2 Process 2 Can be parallelized
[} :
: |:| Communication overhead :
Process 3 SRR . Process 3] e
: Cannot be parallelized: !
: |
Process 4 Can be parallelized Process 4 !
N : L____) Load Unbalance
1. Parallel Speed-up: The "Ideal" Case (2.5x) 2. Parallel Speed-up: Actual Case (~2X)

Comp 521 - Files and Databases Fall 2020 9

\
Shard and Replicate

Why replicate data?

Replicating data across servers helps by:
= Avoiding performance bottlenecks
= Avoiding single point of failures

Input data: A large file

Machine 1 Machine 2 Machine 3
Chunkl of input data Chunk2 of input data Chunk3 of input data
Chunk4 of input data Chunkeé of input data
Chunk3 of input data Chunk6 of input data
Chunk1 of input data Chunk4 of input data

Comp 521 - Files and Databases Fall 2020 10

‘ s,

Shard and Replicate

Why replicate data?
* Replicating data across servers helps by:
= Avoiding performance bottlenecks
= Avoiding single point of failures
= Also enhances scalability and availability

.) a,.,f"‘f/j"/r-’ "\\._\
Maimjefvep:ffé@ ,, T P, e
/Cf;; o "-»\,/j“ A J
/ S ¥
0 -
Sh ¥ s 5
- T . 4
U] \\ L 5 ‘
N o wyr AN ;
D \/ | 2 Jj /
oy > 4o L %)
\\§ Replicated Servers <" s -
o) —~J
N

Comp 521 - Files and Databases Fall 2020 11

\

But,

Consistency Becomes a Challenge...
* An example:

* In an e-commerce application, the bank database has been
replicated across two servers

* Maintaining consistency of replicated data is a challenge
* Our scheduling approach actually assumes a serial execution...

Event 1 = Add $100 Event 2 = Add interest of 5%

1

\J

Bal=2205

\

Bal=2200

Replicated Database
Comp 521 - Files and Databases Fall 2020 12

‘ Qea,

Distributed 2PL

* Two-phase locking protocol (2PL) can still be used to
ensure atomicity and consistency, but it increases the
serial fraction of execution, and usually involves a
single "lock-authority" or coordinator.

Phase I: Voting
VOTE_REQUEST |y

>

Participant 1 Database Server 1

=
<

E |
il |
ol
D,

= |2
< |
5 | =
Y
E///VIE

Coordinator Participant 2 Database Server 2
. VOTE_COMMIT_ _
VOTE_REQUEST N
Participant 3 Database Server 3

Comp 521 - Files and Databases Fall 2020 13

‘ Qea,

Distributed 2PL

* Two-phase locking protocol (2PL) can still be used to
ensure atomicity and consistency, but it increases the
serial fraction of execution, and usually involves a
single "lock-authority", coordinator, and voting.

LOCAL_COMMIT @

Phase Il: Commit
GLOBAL_COI\/IMII

o)

]
X
Participant 1 Database Server 1
A GLOBAL_COMMIT (\l LOCAL_COMMIT
NS > NS >
°
Coordinator Participant 2 Database Server 2

LOCAL_COMMIT

GLOBAL_COMMIT

”

%

v

“Strict” consistency, which

limits scalability! Participant 3 Database Server 3

Comp 521 - Files and Databases Fall 2020 14

...o Q
0 OO"

The CAP Theorem (Brewer's Theorem)

» The fundemental limitations of distributed databases
can be described in the so called the CAP theorem

= Consistency: every node always sees the same data at
any given instance (i.e., strict consistency)

= Availability: continues to operate, even if a node in a
cluster crashes, or some hardware or software parts
are down due to upgrades

= Partition Tolerance: continues to operate in the
presence of network partitions (breaks in connectivity)

have at most two of the three desirable properties, C, A or P

[CAP theorem: Any distributed database with shared data, can]

Comp 521 - Files and Databases Fall 2020 15

...o Q
000“

CAP Examples

= Assume two nodes on opposite sides of a network partition:

X
@
N

/&4

= Availability + Partition Tolerance forfeit Consistency

= Consistency + Partition Tolerance entails that one side of the
partition must act as if it is unavailable, thus
forfeiting Availability

= Consistency + Availability is only possible if there is no network
partition, thereby forfeiting Partition Tolerance (no-delay
network is always available)

Comp 521 - Files and Databases Fall 2020 16

‘.‘o Q
00."

Large-Scale Databases

* When companies such as Google and Amazon were
designing large-scale databases, 24/7 Availability
was a key

= A few minutes of downtime means significant lost revenue

* When scaling databases to 1000s of machines, the
likelihood of a node or a network failure increases
tremendously

* Therefore, in order to have strong guarantees on
Availability and Partition Tolerance, they had to
sacrifice “strict” Consistency (as implied by the CAP
theorem)

Comp 521 - Files and Databases Fall 2020 17

..o Q

'g e

The Consistency Trade-off

e Maintain a balance between the strictness of
consistency versus availability /scalability
e "Good-enough" consistency is application dependent

Loose Consistency Strict Consistency

Easier to implement, and
can be high performance

Generally hard to implement,
and reduces performance

Performance is measured in throughput (how many transactions per second
the system can mange) and latency (how long you have to wait)

Comp 521 - Files and Databases Fall 2020 18

BASE Properties

The CAP theorem proves that it is impossible to guarantee
strict Consistency and Availability while being able to
tolerate network Partitions.

This resulted in databases with relaxed ACID guarantees
* In particular, such databases apply the BASE properties:
» Basically Available: the system favors availability

= Soft-State: state of the system may change over time
but might be slightly inconsistent for small intervals

= Eventual Consistency: the system will eventually
become consistent, particularly if nothing is changing

Comp 521 - Files and Databases Fall 2020 19

Fventual Consistency

| ——

= A database is termed as Eventually Consistent if:

= All replicas will gradually converge to a single
consistent state in the absence of any updates for
some specified interval

/\‘\ﬁa)
Webpage-A
Webpage-A Webpage-A]

. Event: Update
Webpage-A Webpage-A
Webpage-A X
b £
Webpage-A E

4

Comp 521 - Files and Databases Fall 2020 20

\

NoSQL Databases *

= To this end, a new class of databases emerged, which
mainly follow the BASE properties

= These were dubbed as NoSQL databases
* E.g., Amazon’s Dynamo and Google’s Bigtable

= Main characteristics of NoSQL databases include:
* No strict adherence to ACID properties
= Availability > Consistency
- Consistency eventually, if all updates stop
- Less strict schema requirements

Comp 521 - Files and Databases Fall 2020 21

'g o,
’ Types of NoSQL Databases

Here is a taxonomy of NoSQL databases:

NoSQL Databases

Document Graph Key-Value Columnar
Stores Databases Stores Databases

Comp 521 - Files and Databases Fall 2020 22

.000

\

Document Stores

= Documents are stored in some standard format or
encoding (e.g., XML, JSON, PDF or Office
Documents)

* These are typically referred to as Binary Large
OBjects (BLOBs)

= Documents can be indexed

* This allows document stores to outperform typical
file systems

* e.g., MongoDB and CouchDB (both can be queried
using MapReduce (more on this next time!))

Comp 521 - Files and Databases Fall 2020 23

\

Graph Databases

= Data are represented as vertices and edges
— Vertices/Nodes are like E-R "entities"
— Edges are like E-R "relations"

Label: knows
Since: 2001/7/1

id:3
Name:Cathy
Age: 21

Id: 2
Name: Bob

Id: 1
Name: Alice

Name: Chess
Type: Group

* Graph databases are powerful for graph-like queries
(e.g., find the shortest path between two elements)

* E.g., Neo4j and VertexDB

Comp 521 - Files and Databases Fall 2020 24

.000

)¢

000.'

/

Key-Value Stores

= All the world is one big dictionary, or a collection of
dictionaries, of dictionaries, of ...

= Keys are mapped to (possibly) more complex types
(e.g., lists, dictionaries, sets)

* Keys use hash tables to map to values, hash functions
can be distributed easily, even if the data can't be

= Keys map to records, keys map to attribute values,
keys map to multisets (not allowed in relational DBs)

= Such stores typically support regular CRUD (create,
read, update, and delete) operations

- They don't typically support joins or aggregate
functions

* E.g., Amazon DynamoDB and Apache Cassandra

Comp 521 - Files and Databases Fall 2020 25

.000

g e

Columnar Databases

* Columnar databases are a hybrid of DBMSs and
Key-Value stores

= Values are stored in groups of zero or more columns, but in
Column-Order (as opposed to Row-Order)

record,| Alice |42 | NC column, | Alice Bob | Carol | groupl| Alice Bob | Carol
record,| Bob |35 | CA column, |42 |35 |25 group2/ 42 [NC [35 [CA (25 [CA
record,| Carol |25 |CA | column, |[NC |CA |CA

Row-Order Columnar or Columnar with
Column-Order Groups

* Values are queried by matching keys, to find column indices

= E.g., HBase and Vertica

Comp 521 - Files and Databases Fall 2020 26

‘..o Q

°°.“

Summary

Data can be classified into 4 types, structured, unstructured,
dynamic and static

Databases can be scaled up or out

Strict consistency limits scalability

The CAP theorem states that any distributed database with
shared data can have at most two of the three desirable
properties: Consistency, Availability, Partition Tolerance
CAP theorem lead to various designs of databases with
relaxed ACID guarantees

NoSQL (databases follow the BASE properties:

Basically Available, Soft-State, Eventual Consistency
NoSQL databases have ditferent types:

Document Stores, Graph Databases, Key-Value Stores,
Columnar Databases

Comp 521 - Files and Databases Fall 2020 27

