
Comp 521 – Files and Databases Fall 2020 1

External Sorting

The due date for Problem Set #3 has been
extended to 10/13. Problem Set #4 shoud
be issued then as well.

Hope to get Midterm graded by next
Tuesday

Comp 521 – Files and Databases Fall 2020 2

Why Sort?
❖ A classic problem in computer science!
❖ In databases there are advantages to requesting

data in sorted order
▪ gathers duplicates.
▪ allows for efficient searches.
▪ Sorting is first step in bulk loading B+ tree index.
▪ Sort-merge join algorithm involves sorting.

❖ External Sort Problem:
How to sort 20Gb of data with 1Gb of RAM.

❖ Why not let the OS handle it with virtual memory?

Comp 521 – Files and Databases Fall 2020 3

2-Way Sort: Requires 3 Buffers

❖ Pass 1: Read each page, sort it, write it back.
▪ only one buffer page is used

❖ Pass 2, 3, …, N etc.:
▪ Read 2 pages, merge them, and write 2 merged pages
▪ Requires three buffer pages.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Comp 521 – Files and Databases Fall 2020 4

Two-Way External Merge Sort
❖ Each pass we read + write

each page in file.
❖ N pages in the file => the

number of passes

❖ So toal cost is
(2N = N reads + N writes):

❖ Idea: Divide and conquer: sort

pages and merge

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9
1,3
5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2
2,3
3,4

4,5
6,6
7,8

Comp 521 – Files and Databases Fall 2020 5

General External Merge Sort

❖ Key Insight #1: We can merge more than 2 input
buffers at a time… affects fanout 🡪 base of log!

❖ Key Insight #2: The output buffer is generated
incrementally, so only one buffer page is every
needed for any size of run!

❖ To sort a file with N pages using B buffer pages:
▪ Pass 0: use B buffer pages. Produce sorted runs of B

pages each.
▪ Pass 2, …, etc.: merge B-1 runs, leaving one page for

output.

☞ More than 3 buffer pages. How can we utilize them?

Comp 521 – Files and Databases Fall 2020 6

General External Merge Sort

❖ To sort a file with N pages using B buffer pages:
▪ Pass 0: read B pages. Produce sorted runs of B pages.

B Main memory buffers

Input1

InputB

DiskDisk

Input2

.

☞ But we have more than 3 buffer-pool pages.
 How do we utilize them?

. . .

Sorted1

Sorted2

SortedB

Comp 521 – Files and Databases Fall 2020 7

General External Merge Sort

B Main memory buffers

TopPage1

Merge

DiskDisk

.
. . . TopPage2

TopPageB-1

☞ But we have more than 3 buffer-pool pages.
 How do we utilize them?
❖ To sort a file with N pages using B buffer pages:

▪ Pass 0: read B pages. Produce sorted runs of B pages.
▪ Pass 1, …, etc.: merge B-1 runs. Repeat.

Comp 521 – Files and Databases Fall 2020 8

Cost of External Merge Sort
❖ Number of passes:
❖ Cost = 2N * (# of passes)
❖ E.g., with 5 buffer pages, to sort 108 page file:

▪ Pass 0: = 22 sorted runs of 5 pages each
(last run is only 3 pages)

▪ Pass 1: = 6 sorted runs of 20 pages each
(last run is only 8 pages)

▪ Pass 2: = 2 sorted runs, 80 pages and 28 pages
▪ Pass 3: Sorted file of 108 pages

⌈6/4⌉

1 + ⌈log4⌈108/5⌉⌉ = 1 + ⌈log4(22)⌉ = 1 + 3 = 0,1,2,3
108 * (1 read + 1 write) * 4 passes = 864 disk I/Os

Comp 521 – Files and Databases Fall 2020 9

Number External Sort Passes

N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1

1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3
1,000,000,000 30 15 10 8 5 4

Comp 521 – Files and Databases Fall 2020 10

Internal Sort Algorithm
❖ Quicksort is a fast way to sort in memory.

▪ Very fast on average
▪ Worse case N2 (i.e. bad pivots)

❖ Alternatives
▪ Heap Sort, stable and always O(NlogN)
▪ Merge Sort, same approach used in “out-of-core” sort but

applied within a block recursively (low overhead)
▪ Divides block into two halves, sorts each by dividing them

recursively into two halves until there is only one item in the
list. Then merges all of the "half-sized" lists while returning
up the recursion.

❖ Another Problem… waiting to fill the buffer pool

Comp 521 – Files and Databases Fall 2020 11

Sorting Stalls
❖ When a "top page" (the current top of the active run)

empties, we have to wait for it to be refilled
❖ While waiting, we can't fill the merge ouput buffer

using the other top pages, because the next value to
be merged might come from the next block of the
exhausted run

B Main memory buffers

TopPage1

Merge

DiskDisk

.
. . . TopPage2

TopPageB-1

Comp 521 – Files and Databases Fall 2020 12

Double Buffering
❖ To reduce the waiting time for I/O request to complete,

can prefetch the next page of the run into a ”shadow block”.
❖ Potentially, requires more passes; but, in practice, most

files are still sorted in 2-3 passes, and waits are significant.
❖ We can also have a shadow block for the output

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Comp 521 – Files and Databases Fall 2020 13

Sorting Records!
❖ Sorting is a blood sport!

▪ Parallel external sorting is the name of the game ...
❖ 2019 Tencent Sort (Tencent Corp.)

▪ Sort 100Tbyte of 100 byte records
▪ Typical DBMS: > 10 days
▪ World record: 134 seconds

• 4x 10-core Power8 (PowerPC) CPUs
Huawei ES3600P @ 2.9GHz with 512 nodes

• Each node: 512 GB of RAM, and a 1.2TB NVMe SSD disk

❖ New benchmarks proposed:
▪ Minute Sort: How much can you sort in 1 minute?
▪ Cloud Sort: How many $ per TB sorted?

❖ Other ways to sort?

Comp 521 – Files and Databases Fall 2020 14

Using B+ Trees for Sorting

❖ Scenario: Table to be sorted has B+ tree index on
sorting column(s).

❖ Idea: Can retrieve records in order by traversing
leaf pages.

❖ Is this a good idea?
❖ Cases to consider:

▪ B+ tree is clustered Good idea!
▪ B+ tree is not clustered Retriving records in order

 might revisit pages,
 could be slow

Comp 521 – Files and Databases Fall 2020 15

Clustered B+ Tree Used for Sorting

❖ Cost: root to the left-most
leaf, then retrieve all leaf
pages (Alternative 1)

❖ If Alternative 2 is used?
Additional cost of
retrieving data records:
each page fetched
just once.

❖ Introduces a some
overhead extra for the "index" pages fetched

● Always better than external sorting!

(Directs search)

Data Records

Steering Blocks

Leaf Blocks
(Sequence set)

Comp 521 – Files and Databases Fall 2020 16

Unclustered B+ Tree Used for Sorting
❖ Alternative (2) for data entries; each data

entry contains rid of a data record. In general,
one I/O per data record!

Data Records

(Directs search)
Steering Blocks

Leaf Blocks
(Sequence set)

Comp 521 – Files and Databases Fall 2020 17

External Sorting vs. Unclustered Index

● p: # of records per page
● B=1,000 and block size=32 for sorting
● p=100 is the more realistic value.

Comp 521 – Files and Databases Fall 2020 18

Summary

❖ External sorting is important; A DBMS often
dedicates part of its buffer pool just for sorting!

❖ External merge sort minimizes disk I/O cost:
▪ Pass 0: Produces sorted runs of size B (# buffer pages).

Later passes: merge runs.
▪ # of runs merged at a time depends on B, and block size.
▪ Larger block size means less I/O cost per page.
▪ Larger block size means smaller # runs merged.
▪ In practice, # of runs rarely more than 2 or 3.

Comp 521 – Files and Databases Fall 2020 19

Summary, cont.
❖ Choice of internal sort algorithm may matter:

▪ Quicksort: Quick!
▪ Alternative sorts

• guaranteed N logN on worst case data
• stable (ties retain their original order)

❖ The best sorts are wildly fast:
▪ Despite 40+ years of research, we’re still

improving!
❖ Clustered B+ tree is good for sorting;

unclustered tree is usually very bad.

Comp 521 – Files and Databases Fall 2020 20

Next Time
More on Query Evaluation

