Overview of
Query Evaluation

Midterm next Tuesday, in class
80 min, open book, open internet,
no communication

I expect to post the grades for
problem sets #1 and #2 before

class on Thursday

Change of plan for Thursday

Comp 521 - Files and Databases Fall 2020

GONZALES 15 HAVING

Overview of Query Evaluation

uery. SELECT C.name, D.race, D.sex, D.count
FROM County C, Demographics D
WHERE C.fips=D.fips
AND D.year=2020 AND C.region LIKE "Western %"

Q)
‘Q

)
“Q

plan Tree Of Operatlons wzth SELECT C.name, D.race, D.sex, D.count

an algorithm for each |
D.year=2020 AND C.region LIKE "Western %"

C JOIN D ON P.fips =D.fips
An access path might involve an index, / \
iteration, sorting, or other approaches. County C Demographics D

Each operation "pulls" tuples
from "relations" via "access paths"

<+ Two main issues in query optimization:
For a given query, what plans are considered?
Algorithm to search plan space for an effcient plan.
How is the cost of a plan estimated?

« Ideally: Want to find the optimal plan.
« Reality: Want to avoid poor plans!

Comp 521 - Files and Databases Fall 2020 2

‘..o Q
°°."

Some Common Technigues

« Algorithms for evaluating queries use the
same simple ideas extensively:

= Indexing: Can use WHERE conditions to
retrieve a subset of tuples (selections, joins)

= [teration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
search keys of an index instead of the table itself.)

= Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

Comp 521 - Files and Databases Fall 2020

...o Q
000“

Statistics and Catalogs

% Need information about all the tables and
indexes involved.

¢ Catalogs typically contain at least:
- # tuples (NTuples) and # pages (NPages) for each relation.
- # distinct key values (NKeys) and NPages for each index.

- Index height, low and high key values (Low/High)
for each tree index.

« Catalogs are updated regularly.

- Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

@,
%

More detailed information (e.g., histograms ot
the values in some field) are sometimes stored.

Comp 521 - Files and Databases Fall 2020

Today’s Working Example
+ Consider a simplified database with the following two tables:

County(fips: int, name: text, region: text)
Demographics(fips: int, year: int, race: text, sex: text, count: int)

+ Assume each tuple of County is 200 bytes, a page holds, at most,
20 rows, each Demographics tuple is 50 bytes, and a page holds
no more than 80 rows

» Furthermore, assume
6 pages of County (< 120 records), and
200 pages of Demographics (< 16,000 records)

Comp 521 - Files and Databases Fall 2020 5

5

;

Example’s Catalog

Attribute_Cat(attr_name: string, rel_name: string, type: string, position: integer)

+ The system catalog is itself a

Attribute_Cat

. . attr_name rel_name type osition

collection of relations/tables _ P
. attr name Attribute_Cat string 1
(eX' Table attrlbutes, table rel name Attribute_Cat string 2
St&tlSthS, etC-) type Attribute_Cat string 3
KX Catalog tables can be postion Attribute_Cat integer 4
queried just like any other fips County integer 1
name County string 2

table . .

region County string 3
« These queries can be used to |fips Demographics integer 1
examine Query evaluation year Demographics ~ integer 2
tradeoffs race Demographics string 3
sex Demographics string 4
count Demographics integer 5

Comp 521 - Files and Databases Fall 2020

.‘

Access Paths

< An access path is a method of retrieving tuples:

» File scan, or index search that matches the given query’s selection

% A tree index matches (a conjunction of) terms that involve
only attributes in a prefix of the search key.
- E.g., Tree index on <g, b, c> matches the selection a=5 AND b=3,
and a=5 AND b>6, but not b=3.
¢ A hash index matches (a conjunction of) terms that has a
term attribute = value for every attribute in the search key of
the index.

- E.g., Hash index on <g, b, c> matches a=5 AND b=3 AND c=5;
but it does not match b=3, or a=5 AND b=3, or a>5 AND b=3 AND c=5.

Comp 521 - Files and Databases Fall 2020 7

\

A Note on Complex Selections

year > 2010 AND race="aian" AND
(fips=37001 OR fips=37063)

« Selection conditions are first converted to
“sum-of-products”form (ORs of AND clauses)
(year > 2010 AND race="aian" AND fips=37001) OR
(vear > 2010 AND race="aian" AND fips=37063)

« “AND” terms allow us to optimally choose indices
“OR” terms can be generated as independent query
evaluations over the same tables or a subset

Comp 521 - Files and Databases Fall 2020 8

...o Q
000“

One Approach to Selections

« Find the most selective access path, retrieve tuples using
it, and apply any remaining unmatched terms

= Most selective access path: Either an index traversal or file
scan that we estimate requires the fewest page I/Os.

- Terms that match this index reduce the number of tuples
retrieved; other unmatched terms are used to discard tuples,
but do not affect number of tuples/pages fetched.

- Consider year > 2010 AND AND race="aian'

- A B+ tree index on year can be used;
then, sex would be checked for each retrieved tuple.

- Similarly, a hash index on <race> could be used;
then year > 2010 checked. Which is faster?

Comp 521 - Files and Databases Fall 2020 9

‘..o Q
00."

Using an Index for Selections

« Cost depends on #qualifying tuples, and clustering.

- Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large if table isn't
clustered on search key).

- Assume 50% of demographics records are 2010 or after

« If the table is clustered by year, the cost is little more than
(0.5 *200) =100 1/0s

- If table isn't clustered by year (say sex), then there are likely 40
per page requiring us to read all 200 pages!

* In reality, demographics probably are clustered by the year,
so the 100 I/Os might not be that far off

Comp 521 - Files and Databases Fall 2020 10

‘..o Q
00."

Using an Index for Selections

« Cost depends on #qualifying tuples, and clustering.

- Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large if table isn't
clustered on search key).

- There are 2097 demographics records for race='aian'.

* A single hash leads us to a hash bucket linked to 2 overflow
buckets with these record's page ids

* In the worst-case these 2097 records are spread across all 200
Demographics table pages.

 The hash index on Player.name is not very selective for this query

» However, if records are clustered by <year,race>, we might
find all the "aian" records in a subset of pages, getting us back to
100.

Comp 521 - Files and Databases Fall 2020 11

‘..o Q
°°.“

Selection

+ Expensive part is eliminating duplicates.
= SQL systems don’t remove

duplicates unless the keyword SELECT DISTINCT race, sex
DISTINCT is specified in a query. | FROM Demographics

« Sorting Approach

= Sort on <pid, tid> and remove duplicates.
(Can optimize by dropping unneeded attributes while sorting.)

« Hashing Approach
= Hash on <pid, tid> during scan to create partitions.
Ignore hash-key collisions.

< With an index containing both pid and tid, you can step
through the leafs (if tree) compressing duplicates, or
directory of a Hash, however, may be cheaper to sort data
entries!

Comp 521 - Files and Databases Fall 2020 12

Join: Index Nested Loops

foreach tuple r in R: foreach tuple p in P:
foreach tuple p in P: foreach tuple r in R:
if r, op p; : if r, op p; :
add <r, p> to result add <r, p> to result

% If there is an index on the attribute of one relation (say P), if we make
it the inner loop to exploit the index.
= Cost: M + (((M*pg) * cost of finding matching I’ tuples)
= M= #pages of R, p,=# tuples per R page
% For each R tuple, cost of probing S index is ~1.2 for hash index, 2-4 for

B+ tree. Cost of then finding S tuples (assuming Alt. (2) or (3) for data
entries) depends on clustering.

= Clustered index: 11/0 total (typical)
= Unclustered: upto 1 I/O per matching S tuple.

Comp 521 - Files and Databases Fall 2020 13

...o Q
000“

|]

Examples of Index Nested Loops

« Hash-index on race:
- Scan County: 6 pages
- Use index on Demographics:

- 1.21/0Os to get page index, plus 120 I/Os
to get "aian" Demographic records assumes some clustering

* check year > 2010
- 6+ (1+1.2) + 120 =128 I/ Os.
« Tree-index on year:
- Scan County: 6 pages
- Use B+ tree index on Demographics (3 levels + 110 pages)

= check race = "aian"
- Total: 3+110=1131/0s

Comp 521 - Files and Databases Fall 2020 14

Join: Sort-Merge (R JOIN S ON i=j) *

« First, Sort R and S on the join attribute

« Scan both sorted tables while "merging"
to output result tuples.

- Advance scan of R until current R-tuple >= current P tuple,
then advance scan of P until current P-tuple >= current R tuple;
do this until current R tuple = current S tuple.

- At this point, all R tuples with same value in R. (current R group)
and all S tuples with same value in S, (current S group) match;
output <r, s.> for all pairs of such tuples.

- Then resume scanning R and S.

+ Ris scanned once; each S group is scanned once
per matching R tuple. (Repeated scaning of S
group is likely to find needed pages in buffer.)

Comp 521 - Files and Databases Fall 2020 15

29013

Trevor Siemian

Northwestern

1991-12-26

pid name college dob pid | tid | year starts
29010 | Austin Shepherd Alabama | 1992-05-28 29010 /1032 | 2015 0
29011 Josh Shirley | Nevada-Las Vegas | 1992-01-04 29011 | 1006 | 2015 0
29012 | Jameill Showers Texas-El Paso 29011 | 1001 | 2016 0

29014

lan Silberman

Boston College

1992-10-10

29012

1012

2015

29015

Shayne Skov

Stanford

1990-07-09

29013

1004

2015

% Cost: MlogM + Nlog N + (M+N)

29013

1004

2016

14

29013

1004

2017

10

29013

1032

2018

29013

1019

2019

We'll use "out-of-core"
external sorting
(Next lecture’s topic)

Pass 1: Read P in 10, 50 block chunks, sort
each one, and then write them back, then
read R in 8, 50 block chunks, sort each,
and write them back (2(400+500))

Pass 2: Read in the head blocks of the 10
sorted P chunks and the heads of 8 sorted
R chunks. Merge the tops of the 10 into
one block and the tops of the 8 into
another (refill any head block when it is
exhasted). These two merged blocks are
then scanned for matching keys (400+500).

= The cost of scanning, M+N, could be M*N (very unlikely!)

% Using only 20 butfer pages, 200 Demographics pages can be
sorted in 2 passes; total join cost: 10¥20+10 = 210 I/ Os.

Fall 2020

Comp 521 - Files and Databases

16

...o Q
000“

Highlights of Query Optimization =

< Cost estimation: Approximations are an art.

- Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.

- Considers combination of CPU and I/O costs.

« Plan Space: Too large, must be pruned.
- Only the space of left-deep plans is considered.

* Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

- Actual Cartesian products avoided.

Comp 521 - Files and Databases Fall 2020 17

...o Q
000“

Cost Estimation

« For each plan considered,
we must estimate cost:

= Cost of each operation in plan tree.
* Depends on input cardinalities.

* We've already discussed how to
estimate the cost of operations
(sequential scan, index scan,
joins, etc.)

= Must also estimate size of result for
each operation in tree!

* Use information about the input
relations.

* For selections and joins, assume
independence of predicates.

Comp 521 - Files and Databases Fall 2020

Alternate Evaluation Trees:

SELECT C.name, D.race, D.sex, D.count

D.year>2010 AND D.race='aian’

C JOIN D ON P.fips =D.fips

NN

County C Demographics D

Load 6 County blocks and
scan 200 Demographics
blocks 206 I/Os using
only 7 buffer pages

18

‘..o Q
°°."

Summary

« There are several alternative evaluation algorithms for
each relational operator.

< A query is evaluated by converting it to a tree of
operators and evaluating the operators in the tree.

< Must understand query optimization in order to fully
understand the performance impact of a given database
design (relations, indexes) on a workload (set of queries).
+ 'Two parts to optimizing a query:
Consider a set of alternative plans.
* Must prune search space; typically, left-deep plans only.

- Must estimate cost of each plan that is considered.
* Must estimate size of result and cost for each plan node.
* Key issues: Statistics, indexes, operator implementations.

Comp 521 - Files and Databases Fall 2020 19

