\

Hash-Based
Indexes

HASH BROWNS 7 B ACON

WELL me IPAD SAYS
DIFFERENTLY

THERE AIN'T NO BETTER WAY
W THAN THE OLD SCHOOL WAY.

Midterm moved to 10/6
to accommodate
Grace Hopper Conf.

S0 YOU WANT ME
TO SPEND OVER A GRAND
TO PLAY A S10 BOARD GAME?
YOU BEEN BRAINWASHED
LIKE THE OTHER MORONS.

ALL YOU Neep
ARE FOUR PLAYERS
WITH THE APP ON

THEIR I-WHATEVERS.

Stay on top of PS#3

yolye

Comp 521 - Files and Databases Fall 2020

..0 Q

\

Introduction

< Hashing maps a search key directly to page containing
the <search key, pid> information. This page might lead
to a page-overflow chain.

+ Doesn’t require intermediate page fetches for
internal “steering nodes” of tree-based indices.

< Hash-based indexes are best for equality selections.
They do not support efficient range searches.

« Static and dynamic hashing techniques exist
with trade-offs similar to ISAM vs. B+ trees.

Comp 521 - Files and Databases Fall 2020 2

\

The case for "equality" only

Clearly a tree based index can handle both
equality and range searches. So why support an
index with a limited function index?

e Equality test of keys >
are central to joins (
e Equality tests of non-keys Equality
are common
Now

e Needs to be a significant
speed-up over alternatives

Comp 521 - Files and Databases Fall 2020 3

...o Q
000“

Static Hashing

« # primary index pages are fixed, they are allocated sequentially
on their storage volume, they are never deallocated; overflow
pages are allocated if needed.

@ h(search key) mod M = bucket index in which any
<search key, rid> will be placed if one exists. (M = # of buckets)

«» When many records map to the same bucket the overflow are
created and linked

0 - o
h(key) mod N 2 cc
key I I
N-1 . . o o
Primary bucket pages Overflow pages

Comp 521 - Files and Databases Fall 2020

...o Q
000“

Static Hashing (Contd.)

+ Buckets potentially contain many unrelated
<search key, rid> records, and they must be scanned to find
desired search keys

+ Hash function maps a search key to a bin number
h(key) [0 ... M-1. Ideally uniformly.

- in practice h(key) = (A * key + B) mod M, works well.
- Where A and B are relatively prime constants
- Lots of research about how to tune h.

«» Long overflow chains can develop and degrade performance.

+» Hence, dynamic hashing techniques (Extendible and Linear
Hashing) address this problem.

Comp 521 - Files and Databases Fall 2020 5

..o Q

\

Static Hashing Example

« Initially built over “Ages” attribute of our

Sailing club database, with 4 records/page
and h(Age) = Age mod 4

0 .
20% | 24% | 32% Initial Index
1 =
41% | 25% | 29% | 45% Note: records need
9) = not be ordered
26* | 62% | 18* | 34*
3 = Average Occupancy?
31%

Comp 521 - Files and Databases Fall 2020

\

Static Hashing Example

» Adding 28, 33

+ Deleting 31, (leads to empty page)

h(x) = x % 4

Comp 521 - Files and Databases

0

1

20%*

24

32%

28%*

41%*

25%

29%

45%

33%

26%*

62%*

18%*

34

31*

Fall 2020

‘..o Q
°°.“

Hashing’s “Achilles Heel”

« Maintaining Balance
= Data is often “clustered”

= Ideal hash functions should uniformly distribute keys over
buckets.

= A good hash function today might be less optimal
tomorrow.
« Address overflows and imbalance together

= If M buckets are not enough, redistribute rather than
overflow! Solution: a new hash function

= Families of hash functions
h,(key), h,(key), ... h_(key)

= Desired feature: When transitioning between hash functions
we only need to redistribute overflowed buckets

Comp 521 - Files and Databases Fall 2020

‘..o Q
°°.“

|

Extendible Hashing

« Situation: Bucket (primary page) becomes full.
- Change hashing function and reorganize
- New hash distributes over twice # of buckets
- Hash function's modulo changes to 2M

- Reading and writing all pages is expensive!
« Key Idea: Use directory of pointers to buckets
double # of buckets by doubling the directory,
but split only the bucket that overflowed!

- This directory is much smaller than file, so doubling it is
cheap. Only spilt pages are split. No overflows!

- Trick lies in how hash function is adjusted!

Comp 521 - Files and Databases Fall 2020

.... Q
000“

I

Example

% Directory starts with 4 entries

% To find bucket for r, take last
global depth # bits of h(r); we
denote r by h(r).

LOCAL DEPT

GLOBAL DEPTH

2
p

’%

2

4* 12* 32* 16*

= Ifh(5)=5%4=1
In binary 101, last two bits 01

% Insert: If bucket is full, split it
(allocate new page, re-distribute).

% If necessary, double the directory.
(Decision is based on comparing
directory’s global depth with local
of the bucket.)

Comp 521 - Files and Databases

2 / 2
0 (00) 1* 5* 21* 13*
//
1 (01)
2(10) \\ 2
3(11) N 10*
Directory\
T 2
the e oo 15* 7% 19*
depth . =% Tndexpages
Fall 2020 19 | 818811

Bucket A

Bucket B

Bucket C

Bucket D

10

..o Q

)¢

4
12
32
16

1

5
21
13
10
15

7
19
20

000“

Insert h(r)=2(2)@
5 ‘-E

LOCAL DEPTH- Z—

Bucket A
GLOBAL DEPTH 4*12* 32*16”
2 2
00 / / 1* 5* 21* 13* Bucket B
o1 | — |
10 ~—_ 2
11 \ 10* Bucket C
Directory
e 2
s 15 7+ 19+ | BucketD
Z?:: R 1) Double the clirec+ory size
001101 9 /2) Add new links pointing o old buckets
getoig i mod hew M = directorylLi mod old M
J (i mod d yLi mod od M)

001111
000111
010011
010100

3) Split the overflowed bucket using new M

Comp 521 - Files and Databases

= 10100 - 00

(Causes Doubling

Bucket A

Bucket B

Bucket C

Bucket D

LOCAL DEPTH-Z—| 3
GLOBAL [;EPTH 32" 16
3 / 2
000 | ~ 1 5% 21* 13*
//
001
010 \71 2
011 N 10*
100 | \ f><
101 | 7\ 2
110 7 15* 7* 19*
11 | — |
Directori< 3
4* 12* 20*

Fall 2020

Bucket A'
("split image"
of Bucket A)

11

..0 Q

\
Points to Note

< 4 (100), 12 (1100), and 20 (10100).
Last 3 bits (100) tell us r belongs in A or A'.

- Global depth of directory: Max # of bits needed to tell which
bucket an entry belongs to.

= Local depth of a bucket: # of bits used to determine if an
entry belongs in its bucket.

< When does bucket split cause directory doubling?

- Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and ‘fixing” pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

Comp 521 - Files and Databases Fall 2020 12

6 =110

00

01
10

11

6*

000
001
010
011
100
101
110
111

Least Significant
Comp 521 - Files and Databases

Directory Doubling

6 =110

6*

6*

Fall 2020

00

10
01

11

6*

Why use least significant bits in directory?
Allows for doubling via copying]!

000

100
010

110

001

101
011

111

6*

Most Significant

‘.‘o Q
00."

Comments on Extendible Hashing e

« If directory fits in memory, or is pinned in page buffer,
equality searches are answered with one disk access; else
two.

- 100MB file, 100 bytes/rec, contains 1,000,000 records. A hash with
16,384 directory entries, with 40 bytes per <search key, rid> using
4Kb pages has a capacity of 100 search keys per bucket and a
capacity of 1,638,400 keys; Chances are high that the directory will
fit in memory.

- Directories grows in spurts, and, if the distribution of hash values is
skewed, the directory size can grow large.

- Multiple entries with same hash value cause problems!
¢ Delete: If removal of data entry makes a bucket empty, it

can be merged with its “split image’. If directory element
M/ 2 pairs point to the same bucket, can halve the directory.

Comp 521 - Files and Databases Fall 2020 14

.!00

\
Linear Hashing

« This is another dynamic hashing scheme, an
alternative to Extendible Hashing.

« LH avoids the need for a directory, yet avoids the
problem of “long” overflow chains.

& Idea: Uses a family of hash functions ho' h1' hz,
- h (key) = h(key) mod(2'N); N = initial # buckets
= h is some hash function (range is not 0 to N-1)

« If N = 2%, for some d0, h, consists of applying h and looking
at the last di bits, where di = d0 + 1.

- h_ doubles the range of h, (similar to directory doubling)

Comp 521 - Files and Databases Fall 2020 15

..o Q

)¢

/ Linear Hashing (Contd.)

+ Directory avoided in LH by allowing overflow

pages, and always splitting the next bucket (in a
round-robin fashion).
- Splitting proceeds in "rounds’. Round ends when all

N, initial (for round R) buckets are split. Buckets 0 to
Next-1 have been split; Next to N, yet to be split.

- Current round number is Level.
- Search: To find bucket for data entry , find h, _ (7):

* It h, (r)inrange Nextto N,, r belongs here.

* Else, r could belong to bucket h, (7)

or bucketh, (r)+ N,

must apply h, __(r) to find out.

Comp 521 - Files and Databases Fall 2020 16

\

Overview of LH File

% In the middle of a round.

Bucket to be split

Buckets that existed at the

beginning of this round: —
this is the range of

hLevel

In linear hashing bucket pages

9 _~must be adlocated sequentially. This

' is not a reguirement For

extensible hashinﬂ.

Comp 521 - Files and Databases

If h . (search key value)
is in this range, must use
h(search key value)

to decide if entry is in
“split image” bucket.

;I Buckets split in this round:

"split image" buckets:
;I created (through splitting

of other buckets) in this round

Fall 2020 17

‘..o Q
00."

Linear Hashing (Contd.)

¢ Insert: Find bucket by applying two hashes h
= Jf hL < next use it otherwise h
evel Leve
- If bucket to insert into is full:

Level’! ~"Level+1

[+1

* Add an overflow page and insert data entry.

* Split and redistribute Next bucket and its
associated overflow pages and increment Next.

* The bucket that is split may not be the same
as the one that overflowed!

* Once next reaches M of h reset it to 0, increase level

Level”

< Next is updated sequentially. Since buckets are split
round-robin, long overflow chains don’t develop!

< Doubling of directory in Extendible Hashing is similar;
switching of hash functions is implicit in how the # of bits

examined is increased
Comp 521 - Files and Databases Fall 2020 18

5

% Onsplit, h, . isused to redistribute entries.
evel+1

« If bucket is full, Spill, Split ‘Next’, Move ‘Next’

;

Example of Linear Hashing

Level =0 Insert 43 Level =0
A (101011) o ln
1 OlNext=p Primary Pages ot 1 0 Primary Pages Overflow Pages
000 |80 >[32¢|44*|36*| Kahere 000 |00 32%
Next=1
001 | 01 O* |25%| 5% $ 001 |01| | 9* |25%| 5*
010 |10 14*|18*|10*|30* 010 |10 14*[18*|10*|30*
hashes
011 |11 31*|35*| 7* | 11* KO here 011 |11 31* |35+ | 7* [11*|— 43*
100 |00 44* | 36*

Comp 521 - Files and Databases Fall 2020 19

"

000
001
010
011

100

00

01

10

11

00

Next=1

Level =0

Primary Pages

32*

9*

25*

5*

14*

18*

10*

30*

Insert 37 (00100101)

References page = “Next”, check h0 page, fits, no action

Overflow Pages

hashes
here

31*

35*¢

7*

11*

|43

44>

36

Comp 521 - Files and Databases

Fall 2020

20

..o Q

'g e

Insert 29 (00011101)

+ References page = “Next”, check h page
« Spill, split, move Next

Level =0 Level =0
h h :
by | hy Primary Pages Overflow Pages ' ’ Primary Pages Overflow Pages
000 |00 3% 000 |00 32*%
Next=1
hashes 001 |01 9 [25+

001 (81| > 9% |25%| 5¢ |37* Khere

Next=2
010 |10 14+118*[10*[30* 010 |10 ——>|14*|18*|10*|30*
011 |11 31*|35%| 7* [11* —43* 011 |11 31*%[35%| 7% |11* — 43*
19919)36 i)36 e e
page < Next, so we'd
181 161 5% | 37%|20* need to consider h

2 to determine the
correct bucket.

Comp 521 - Files and Databases Fall 2020 21

..o Q

'g s,

Insert 22 (00010110)

+ References page = “Next”, check h page
« spill, split, move Next

Level =0
h |h :
Level =0 1 0 Primary Pages Overflow Pages
h h 000 |00 32*
1 0 Primary Pages Overflow Pages
000 |00 32* 001 |01 9* |25*
001 |01 9* | 25* 010 |10 18*|10*
Next=2 hashes Next=3

010 (10| —>|14*|18*|10*|30* [(Qhere 811 |11 ~—>(31%(35*| 7* | 11*—43*
811 |11 31%|35%| 7% |11* —=43* 100 |00 44* | 36*
100 |00 44* | 36* 101 |91 5% |37%|29*
101 |01 5* |37*|29* 110 |10 14* |30%| 22*

Comp 521 - Files and Databases Fall 2020 22

..o Q

'g Qe

Add 51 (00110011): End of a Rou

Level =0
Level =0 by by Next=0 Primary Pages

h, | h Primary Pages Overflow Pages 0000 |00 | {32

000 |60 32* 0001 | 001 o* | 25*
001 |01 O* | 25% P010 |010 18*|10*
010 (10 18*|10* 0011 |011 35%(11*|51*

Next=3

011 |11 —>31%|35%| 7% |11* —~{43* 9100 | 100 44* | 36*
100 (00 44*)36* 0101 | 101 5% |37%|29*
101 |01 5% |37*%|29* 9110|110 14* | 30* | 22*
110 |10 14* | 30* | 22* 9111 1111 31*| 7*

Comp 521 - Files and Databases Fall 2020 23

..o Q

\

Summary

+ Hash-based indexes: best for equality searches,
cannot support range searches.

« Static Hashing can lead to long overflow chains.

< Extendible Hashing avoids overtlow pages by
splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow pages.)
- Directory to keep track of buckets, doubles periodically.

- Can get large with skewed data; additional 1/0O if this
does not fit in main memory.

Comp 521 - Files and Databases Fall 2020 24

.000

\
Summary (Contd.)

+ Linear Hashing avoids a directory by splitting
buckets round-robin, and using overflow pages.
- Overtlow pages not likely to be long, nor around for long.
- Duplicates handled easily.

- Space utilization could be lower than Extendible Hashing,
since splits not concentrated on "dense” data areas.

* Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.
< For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

Comp 521 - Files and Databases Fall 2020 25

