
Comp 521 – Files and Databases Fall 2020 1

Tree-Structured
Indexes

PS #2 due before midnight tonight
PS #3 should be available late tonight

Midterm is coming!
Next Thursday from 10/1

Comp 521 – Files and Databases Fall 2020 2

Introduction
❖ As for any index, 3 alternatives for data entries k*:

▪ index refers to actual data record with key value k
▪ index refers to list of <k, rid> pairs
▪ index refers to list of <k, [rid list]>
▪ Often the record id, "rid", is smply a page id "pid"

❖ Choice is orthogonal to the indexing technique
used to locate data entries k*.

❖ Tree-structured indexing techniques support
both range searches and equality searches.

❖ ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

Comp 521 – Files and Databases Fall 2020 3

Range Searches
❖ “Find counties and dates where 200 or more COVID-19

cases were reported”
▪ If Covid19 records are sorted by case counts, do binary search

to find first such player, then scan to find rest.
▪ Cost of binary search can be quite high

(must read entire page to access one record).
❖ Simple idea: Create an 'index' file.

☞ Can perform binary (or better) search on (smaller) index file!

Data Page1 Data File
(with full Covid19 Records)

Index File
(with Covid19 cases)

(k, pid)1, (k,pid)2, (k,pid)3, ... (k,pid)n-2, (k,pid)n-1, (k,pid)n

Data pages are probably
not ordered by this key,
but this range might still be
an effective filter.

What if the (key, pid) pairs
are large and occupy
many pages?

Data Page2 Data Page3 Data Pagem

Comp 521 – Files and Databases Fall 2020 4

ISAM – Indexed Sequential Access Method

❖ Index file may be quite large.
❖ Can be applied hierarchically!

☞ Leaf pages contain data entries (i.e. actual records or <key, rid> pairs.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Overflow

page
Primary pages

Leaf

Ki is a search key of a
tuple in the relation. Pi is the
page id of either the page
containing it, or another
index page containing search
keys >= Ki and < Ki+1.

Comp 521 – Files and Databases Fall 2020 5

Comments on ISAM
❖ File creation: Leaf index pages of <search key, pid>

pairs are created first; then sorted by search key;
then higher-level index pages are created as
needed until all search keys fit into a single page.

❖ Index entries: <search key, pid>;
they 'steer' the search for data entries,
which are in leaf pages.

❖ Search: Start at root; use key comparisons to leaf.
Cost: logF N (page reads)
F = # entries/index page, N = # leaf pages

❖ Insert: Find largest leaf search key entry less than
or equal to the inserted record's key value, insert
the new record on that page if space is available, else allocate an
overflow page, put it there, and link it in.

❖ Delete: Use index to find data page with key value, delete the record, if
data page is empty and is an overflow page, you can de-allocate it.

☞ Static tree structure: inserts/deletes affect only data pages.

Data Pages

Index Pages

Overflow pages

Comp 521 – Files and Databases Fall 2020 6

Example ISAM Tree
❖ Trivial example where each index page holds only

2 search keys, and 3 page ids. Notice root, and last
page of an index level might not be "full"

220

240 260185 200

175 180 185 195 200 205 220 230 240 252 260 310

Comp 521 – Files and Databases Fall 2020 7

After Inserting 190, 230, 239, 235

220

240 260185 200

175 180 185 195 200 205 220 235 240 255 260 310

190
230 239

235

"Static"
Index

steering
Pages

Index Leaf
Nodes

"Static"
Allocation, but
dynamic links

Dynamic
Overflow

Pages

When leaf nodes overflow, their search keys
may no longer be sorted. Thus, a linear scan
within a leaf overflow pages is needed.
(ex. 190 < x < 250)

Comp 521 – Files and Databases Fall 2020 8

… then delete the records 239, 205

220

240 260185 200

175 180 185 195 200 205 220 235 240 255 260 310

190
230 235

"Static"
Index

steering
Pages

Index Leaf
Nodes

"Static"
Allocation, but
dynamic links

Dynamic
Overflow

Pages

☞ Now that 205 appears in index, but not in page!

Comp 521 – Files and Databases Fall 2020 9

ISAM conclusions and issues
❖ ISAM indices can be built quickly and and are efficient

in terms of space uitilzation
❖ Generally there are hundreds of keys per page

▪ The tree depth is seldom greater than 3 or 4

❖ Great for a read-mostly tables
❖ If Inserts, Deletes, and Updates of keys are common

▪ ISAM can become stale (many linear leaf scans)
▪ An ISAM tree can become unbalanced

❖ Frequently this requires rebuilding of the index
❖ By default sqlite is using an ISAM index

Comp 521 – Files and Databases Fall 2020 10

B+ Tree: A Widely Used Tree Index
❖ Insert/delete at log F N cost; maintains a balanced tree.

(F = fanout, N = # leaf pages)
❖ Minimum 50% node occupancy, with the possible

exception of the root. Each internal non-root node
contains ½ d ≤ m ≤ d entries. The parameter d is called
the order of the tree.

❖ Supports equality and range-searches efficiently.

Index Entries

Data Entries
<search_key, rid> or
relation tuple if clustered

(Steering Nodes/Blocks)

Comp 521 – Files and Databases Fall 2020 11

Example B+ Tree
❖ Search begins at root, and key comparisons direct it

to a leaf (as in ISAM).
❖ We use * to indicate a search key with an associated

data-page id
❖ Search for 5*, 15*, all data entries ≥ 24* ...

☞ Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Comp 521 – Files and Databases Fall 2020 12

B+ Trees in Practice
❖ Typical order: 200, which implies a maximum of 200

children with 199 search keys. (8Kb page, 40 bytes per
index entry)
▪ average fill-factor: 67%.
▪ average fanout = 133

❖ Typical capacities:
▪ Height 4: 1334 = 312,900,700 records
▪ Height 3: 1333 = 2,352,637 records

❖ Top levels of B+ tree are often pinned in buffer pool:
▪ Level 1 = 1 page = 8 Kbytes
▪ Level 2 = 133 pages = 1 Mbyte
▪ Level 3 = 17,689 pages = 133 Mbytes

Comp 521 – Files and Databases Fall 2020 13

Inserting into a B+ Tree
❖ Find correct leaf L.
❖ Put data entry onto L.

▪ If L has enough space, done!
▪ Else, must split L (into L and a new node L2)

• Allocate new node
• Redistribute entries evenly
• Copy up middle key.
• Insert index entry pointing to L2 into parent of L.

❖ This happens recursively
▪ To split index node, redistribute entries evenly, but push up

middle key (first key in new block). (Contrast with leaf splits.)
❖ Splits “grow” tree; root split increases height.

▪ Tree grows wider and one level taller at top.

We maintain the
invariant that all
steering nodes,
besides the root,
are at least half full.

Comp 521 – Files and Databases Fall 2020 14

Inserting 8* into Example B+ Tree
❖ Observe how

minimum
occupancy is
guaranteed in both
leaf and index
page splits.

❖ Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

Insert a record with
a search key = 8

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5
continues to appear in the leaf.)

is copied up and

appears once in the index.)

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

Comp 521 – Files and Databases Fall 2020 15

Example B+ Tree After Inserting 8*

❖ Notice that root was split, leading to increase in height.
❖ In this example, we could have

avoided splitting by
redistributing key entries;
however, this is
seldom done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Comp 521 – Files and Databases Fall 2020 16

Deleting an entry from a B+ Tree
❖ Start at root, find leaf page L with entry, if it exists.
❖ Remove the entry.

▪ If L is at least half-full, done!
▪ If L has only ½ d - 1 entries,

• Try to re-distribute, borrowing keys from sibling
(adjacent node with same parent as L).

• If redistribution fails, merge L and sibling.
❖ If merge occurred, must delete entry (pointing to L

or sibling) from parent of L.
❖ Merge could propagate to root, decreasing height.

Comp 521 – Files and Databases Fall 2020 17

Example Tree After (Inserting 8*,
Then) Deleting 19* and 20* ...

❖ Deleting 19* was easy (leaf node stayed at least half full).
❖ Deleting 20* required redistribution (moving serach keys and

page ids between blocks). Notice how middle key, 27, is copied up,
replacing 24.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Before:

Comp 521 – Files and Databases Fall 2020 18

30

22* 27* 29* 33* 34* 38* 39*

Result of merge with the
splitting 27 key "tossed"

... and then Delete 24*
❖ Must merge.
❖ Observe 'toss' of

index entry (27)
❖ And ‘pull down’ of index

entry from above (17).
❖ Tree-height shrinks

X

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

30135 17

Root

Result of pulling down "17"

Comp 521 – Files and Databases Fall 2020 19

Prefix Key Compression
❖ Important to increase fan-out.
❖ Common with composite search keys, and strings
❖ Key values in index entries only “direct traffic”; can

often compress them.
▪ E.g., If we have adjacent index entries with search key values

Dannon Yogurt, David Smith and Devarakonda Murthy, we can
abbreviate David Smith to Dav. (The other keys can be
compressed too ...)

• Is this correct? Not quite! What if there is a data entry Davey Jones?
(Can only compress David Smith to Davi) Why?

• In general, while compressing, must leave each index entry greater
than every key value (in any subtree) to its left.

❖ Insert/delete must be suitably modified.

Comp 521 – Files and Databases Fall 2020 20

Creating a B+ Tree index
❖ If we have a large collection of records, and we want to

create a B+ tree on some field, doing so by repeatedly
inserting records is very slow.

❖ Index creation is usually done via Bulk Loading which can
be done efficiently.

❖ Initialization: Sort all data entries, insert pointer to first
(leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Comp 521 – Files and Databases Fall 2020 21

Bulk Loading (Contd.)
❖ Index entries for leaf

pages always
entered into
right-most index
page just above leaf
level. When this
fills up,
it splits. (Split may
go up right-most
path to the root.)

❖ Much faster than
repeated inserts,
especially if one
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

Comp 521 – Files and Databases Fall 2020 22

Summary of Bulk Loading
❖ Option 1: multiple inserts.

▪ Slow.
▪ Does not give sequential storage of leaves.

❖ Option 2: Bulk Loading
▪ Has advantages for concurrency control.
▪ Fewer I/Os during build.
▪ Leaves will be stored sequentially (and linked, of

course).
▪ Can control “fill factor” on pages.

Comp 521 – Files and Databases Fall 2020 23

Summary

❖ Tree-structured indexes are ideal for
range-searches, also good for equality searches.

❖ ISAM is a static structure.
▪ Only leaf pages modified; overflow pages needed.
▪ Overflow chains can degrade performance unless size

of data set and data distribution stay constant.
❖ B+ tree is a dynamic structure.

▪ Inserts/deletes leave tree height-balanced; log F N cost.
▪ High fanout (F) means depth rarely more than 3 or 4.
▪ Almost always better than maintaining a sorted file.

Comp 521 – Files and Databases Fall 2020 24

Summary (Contd.)

▪ Typically, 67% occupancy on average.
▪ Usually preferable to ISAM, modulo locking

considerations; adjusts to growth gracefully.
▪ If data entries are data records, splits can change rids!

❖ Key compression increases fanout, reduces height.
❖ Bulk loading can be much faster than repeated

inserts for creating a B+ tree on a large data set.
❖ Most widely used index in database management

systems because of its versatility. One of the most
optimized components of a DBMS.

Comp 521 – Files and Databases Fall 2020 25

Next Time
Hash Indices

