
Comp 521 – Files and Databases Fall 2020 1

Overview of Storage and Indexing
Due date of Problem Set #2 is
now midnight next Tuesday
(9/22).
Problem Set #3 will be issued
the same day.

I have modified my office
hours to W, Th from
11am-noon. Still open door,
and group programming
oriented.

Comp 521 – Files and Databases Fall 2020 2

"Physical" Storage
❖ Solid State Disks, Secure Digital (SD) non-volatile memory:

▪ Block addressable storage device, relatively symmetric R/W speeds,
low latency, but number of write cycles is limitied.

❖ Disks: Can retrieve random page at fixed cost
▪ Also block oriented with high latency, but reading consecutive blocks is

much cheaper than reading them in random order
❖ Tapes: Can only read pages sequentially

▪ Block oriented, even higher latency. Practically limited to sequential
access. But, cheaper than disks; used for archival storage

❖ Key Observations: The attributes of physical storage vary both within and
between types. The data-life cycle is longer than the distance between
technology and performance changes. There is a constant need to retrofit
new technolgies into existing storage systems.

❖ Our goal: Create an abstraction over physical storage that is both effcient
and future proof.

Comp 521 – Files and Databases Fall 2020 3

Pages and Blocks
❖ Pages: Pages are the minimally addressable unit of data access.

Generally, a page is composed one or more "device" blocks.

❖ File organization: Method of arranging records in pages.
▪ Multiple records are placed in pages whose size is a good match to a

block.
▪ A page that spans multiple sequential blocks has certain

advantages.
▪ Record id (rid) is an identifier that sufficient to locate record's page
▪ Indexes are data structures that allow us to find the record ids of

records with given values using "search key" fields.
▪ Indexes are also kept on phyical storage, just like data records.

❖ Architecture: Buffer manager stages pages from external storage
to main memory in a datastructure called a "buffer pool". File
and index layers both make calls to the buffer manager.

Comp 521 – Files and Databases Fall 2020 4

Alternative File Organizations
Many alternatives exist, each ideal for some

situations, and not so good in others:
▪ Heap files (random record order) : Suitable when

typical access is a file scan retrieving all records.
▪ Sorted Files (records sorted by some ordered set of

attributes) : Best if records are commonly retrieved in
some order, or only a `range’ of records is needed. A
file can only be sorted by a single set of attributes.

▪ Indexes: Data structures that organize record IDs to
simplify searches and queries. Can have many.

• Like sorted files, they speed up searches for a subset of
records, based on values in certain (“search key”) fields

• Updates can be faster than in sorted files.

Comp 521 – Files and Databases Fall 2020 5

Indexes
❖ An index is an auxillary data structure that

accererates queries using the search key fields
of the index.
▪ Any subset of attributes from a relation can be a

search key.
▪ Search key is not necessarily a relation key (a set of

fields that uniquely identify a tuple in a relation).
❖ An index contains a collection of data entries,

and supports efficient retrieval of all data
entries k* with a given key value k.
▪ Given data entry k*, we can find record with key k

in at most one disk I/O. (Details soon …)

Comp 521 – Files and Databases Fall 2020 6

Hash-Based Index
❖ Groups all record IDs with a common attribute

set together n.
❖ Index is a collection of buckets.

▪ Bucket = primary page plus zero or
 more overflow pages.
▪ Buckets contain data entries.

❖ Hashing function, r = h(search key) :
Mapping from the index’s search key to a
bucket in which the (data entry for) record r
belongs.

H(x)
key

Comp 521 – Files and Databases Fall 2020 7

Tree-Based Index

❖ Leaf pages contain data entries, and are chained (prev & next)
❖ Non-leaf pages have index entries; used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
(“Ordered” by search key)

Leaf

Comp 521 – Files and Databases Fall 2020 8

Alternative Data/Index Organizations
❖ In leaf pages we can store one of the following:

▪ Actual data records with the key's value or range
(clustered index), which implies a sorted file
▪ <k, rid of data record with search key value k>
▪ <k, list of rids of data records with search key k>

❖ Data organization choice is independent of the
indexing method.
▪ Clustered indices save on accesses, but you can only

have 1 clustered index per relation
▪ Unclustered alternatives gather rids, and then plan

how to access pages.

Comp 521 – Files and Databases Fall 2020 9

Index Classifications
❖ Primary vs. Secondary: If search key contains

primary key, then it is called a primary index.
▪ Unique index: Search key contains a candidate key.
▪ Each search key leads to one record

❖ Clustered vs. Unclustered:
▪ Clustered: tuples are sorted by search key and stored

sequentially in data blocks. A file can be clustered on
at most one search key.

▪ Unclustered: search keys are stored with record ids
(rids) that identify the page containing the associated
tuple

Comp 521 – Files and Databases Fall 2020 10

Clustered vs. Unclustered Index
❖ Index type (Hash or Tree) is independent of the data’s

organization (clustered or unclustered).
▪ To build clustered index, we must first sort the records (perhaps

allowing for some free space on each page for future inserts).
▪ Later inserts might create overflow pages. Thus, eventual order

of data records is “close to”, but not identical to, the sort order.

Index entries

Data entries

direct search for

(Index Blocks)
(Data Blocks)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Comp 521 – Files and Databases Fall 2020 11

Costs / Benefits of Indexing
❖ Adding an index incurs

▪ Storage overhead
▪ Maintenance overhead

❖ Without indexing, searching the records of a
database for a particular record would
require on average

Number of Records * Cost to read a Record * 0.5

(assumes records are in random order)

Comp 521 – Files and Databases Fall 2020 12

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
▪ B: The number of data pages
▪ R: Number of records per page
▪ D: (Average) time to read or write a block
▪ Measuring number of page I/O’s ignores gains of

pre-fetching a sequence of pages; thus, even I/O
cost is only approximated.

▪ Average-case analysis; based on several simplistic
assumptions.

☞ Good enough to show the overall trends!

Comp 521 – Files and Databases Fall 2020 13

Comparing File Organizations
❖ Heap file (random record order;

inserts are placed at end-of-file)
❖ Sorted files, sorted on <age, sal>
❖ Clustered B+ tree file, clustered on search

key <age, sal>
❖ Heap file with unclustered B+ tree index

on search key <age, sal>
❖ Heap file with unclustered hash index

on search key <age, sal>

Comp 521 – Files and Databases Fall 2020 14

Operations to Compare
❖ Scan: Fetch all records from disk
❖ Equality search
❖ Range selection
❖ Insert a record
❖ Delete a record

SELECT *
FROM Emp

SELECT *
FROM Emp
WHERE Age = 25 SELECT *

FROM Emp
WHERE Age > 30

INSERT
INTO Emp(Name, Age, Salary)
VALUES(‘Jordan’, 57, 16000000000)

DELETE
FROM Emp
WHERE Name =‘Bristow’

Comp 521 – Files and Databases Fall 2020 15

Assumptions in Our Analysis
❖ Heap Files:

▪ Equality selection is on key 🡪 exactly one match
❖ Sorted Files:

▪ Files are compacted after deletions.
❖ Indexes:

▪ Search key overhead = 10% size of record
▪ Hash: No overflow buckets.

• 80% page occupancy => File size = 1.25 data size
▪ Tree: 67% occupancy (this is typical).

• Implies file size = 1.5 data size
• Tree Fan-out = F

Comp 521 – Files and Databases Fall 2020 16

Assumptions (contd.)
❖ Scans:

▪ Leaf levels of a tree-index are chained.
▪ Index data-entries plus actual file scanned for

unclustered indexes.
❖ Range searches:

▪ We use tree indexes to restrict the set of data
records fetched, but ignore hash indexes.

Leaf Pages
(“Ordered” by search key)

Comp 521 – Files and Databases Fall 2020 17

Cost of Operations

☞ Several assumptions underlie these (rough) estimates!
We’ll cover them in the next few lectures.

File Type Scan Equality
Search

Range Search Insert Delete

Heap BD 0.5BD BD 2D Search + D

Sorted BD Dlog2B Dlog2B +
#matches

Search + BD Search + BD

Clustered 1.5BD DlogF1.5B DlogF1.5B +
#matches

Search + D Search + D

Unclustered
tree index

BD(R+0.15) D(1+
logF0.15B)

D(1+logF0.15B+
#matches)

D(2+logF0.15
B)

Search + 2D

Unclustered
hash index

BD(R+0.125) 2D BD 3D Search + 2D

Comp 521 – Files and Databases Fall 2020 18

Indexes and Workload
❖ For each query in the workload:

▪ Which relations does it access?
▪ Which attributes are retrieved?
▪ Which attributes are involved in selection/join conditions?

How selective are the conditions applied likely to be?
❖ For each update in the workload:

▪ Which attributes are involved in selection/join conditions?
How selective are these conditions likely to be?

▪ The type of update (INSERT/DELETE/UPDATE), and the
attributes that are affected.

Comp 521 – Files and Databases Fall 2020 19

Index-Only Plans
❖ Some queries

can be answered
without
retrieving any
tuples from a
relation if a
suitable
index is
available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
 E.sal BETWEEN 30000 AND 50000

 <E.dno>
Index on dno
has rids of
tuples with the same key.
Just count them.

A Tree index on
<E.dno,E.sal>
would give the
anwser

<E. age,E.sal>
 or
<E.sal, E.age>
Average qualifying
index keys

Comp 521 – Files and Databases Fall 2020 20

Example
import time
import sqlite3

Q = """SELECT C.name, SUM(count) AS females
 FROM County C, Demographics D
 WHERE C.fips=D.fips
 AND D.year = 2020 AND D.sex='female'
 GROUP BY C.name
 HAVING SUM(count) > 100000"""

db = sqlite3.connect("NCCOVID19.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

start = time.time()
cursor.execute(Q)
countyList = []
for row in cursor:
 countyList.append((row['name'],row['females']))
print("number of counties with more than 100,000 females = %d (%6.4f secs)" % (len(countyList),
time.time()-start))

for row in sorted(countyList, reverse=True):
 print(row)

Comp 521 – Files and Databases Fall 2020 21

Example
import time
import sqlite3

Q = """SELECT C.name, SUM(count) AS females
 FROM County C, Demographics D
 WHERE C.fips=D.fips
 AND D.year = 2020 AND D.sex='female'
 GROUP BY C.name
 HAVING SUM(count) > 100000"""

db = sqlite3.connect("NCCOVID19.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

cursor.execute("CREATE INDEX IF NOT EXISTS YearSex ON Demographics(year,sex)")
start = time.time()
cursor.execute(Q)
countyList = []
for row in cursor:
 countyList.append((row['name'],row['females']))
print("number of counties with more than 100,000 females = %d (%6.4f secs)" % (len(countyList),
time.time()-start))

for row in sorted(countyList, reverse=True):
 print(row)

Comp 521 – Files and Databases Fall 2020 22

Summary
❖ Alternative file organizations, each suited for

different situations.
❖ If selection queries are frequent, data

organization and indices are important.
▪ Hash-based indexes
▪ Sorted files
▪ Tree-based indexes

❖ An index maps search-keys to associated tuples.
❖ Understanding the workload of an application,

and its performance goals, is essential for a good
design.

