

❖

❖
SELECT *
FROM Sailors
WHERE age > 18
ORDER BY rating

SELECT *
FROM Sailors
WHERE age > 18
ORDER BY rating DESC

 SELECT *
FROM Sailors
WHERE age > 18
ORDER BY rating DESC, sname ASC

❖

❖

SELECT *
FROM Sailors
LIMIT 5

SELECT *
FROM Sailors
ORDER BY rating DESC
LIMIT 5

❖

▪

❖
▪

▪

▪

▪

❖

CREATE TABLE Sailors(
 sid INTEGER PRIMARY KEY,
 sname TEXT,
 rating INTEGER,
 age REAL)

INSERT INTO Sailors(sid,sname,rating,age)
 VALUES (22, 'dustin', 7, 45.0),
 (31, 'lubber', 8, 55.5),
 (58, 'rusty', 10, 35.0)

SELECT * FROM Sailors

The PRIMARY KEY designation is a
simple CONSTRAINT in SQL. Each
PRIMARY KEY must be unique, and
whether it is is checked and
enfoced on INSERTS

CREATE TABLE Boats(
 bid INTEGER PRIMARY KEY,
 bname TEXT,
 color TEXT)

INSERT INTO Boats
 VALUES (101, 'Interlake', 'blue'),
 (102, 'Interlake', 'red'),
 (103, 'Clipper', 'green')

SELECT * FROM Boats

The attribute list is optional
on an INSERT if you fill
every column in the same
order given by the CREATE.

CREATE TABLE Reserves(
 sid INTEGER,
 bid INTEGER,
 day DATE,
 PRIMARY KEY(sid,bid),
 FOREIGN KEY(sid) REFERENCES Sailors(sid),
 FOREIGN KEY(bid) REFERENCES Boats(bid)
);

INSERT INTO Reserves
 VALUES(22, 101, '1996-10-10'),
 (31, 103, '1996-11-12');

SELECT * FROM Reserves;

A composite
PRIMARY KEY
(i.e. composed of
more than one
attribute) is
defined
separately at the
end of the
CREATE.

A FOREIGN KEY is another
common constraint. It implies that
this attribute is type compatiable
with the referenced attribute in
another table. Optionally it can
disable insertions unless the value
inserted matches a value in a row
with the referenced table,

❖

❖

❖

Sailors: Reserves:

SELECT S.sname, R.day
FROM Sailors S JOIN Reserves R ON S.sid=R.sid

SELECT S.sname, R.day
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

SELECT S.sname, R.day
FROM Sailors S INNER JOIN Reserves R ON S.sid=R.sid
SELECT S.sname, R.day
FROM Sailors S NATURAL JOIN Reserves R

“INNER” implies *ONLY*
tuples that share the join
condition appear in the
result set. It is the default
JOIN.

"NATURAL" implies that
rows from each table are
combined if

1) they have the same
attribute name

2) they have the same
attribute value

❖

❖

Sailors: Reserves:

SELECT S.sname, R.day
FROM Sailors S LEFT JOIN Reserves R ON S.sid=R.sid

SELECT S.sname, R.day
FROM Sailors S NATURAL LEFT JOIN Reserves R

Boats:

❖

❖

Sailors: Reserves: Boats:

SELECT R.day, B.bname
FROM Reserves R NATURAL RIGHT JOIN Boats B

Some databases (like the
one we'll use this
semester) do not support
right joins. But, left and
right are arbitrary

SELECT R.day, B.bname
FROM Boats B NATURAL LEFT JOIN Reserves R

❖

SELECT S.sname, R.day, B.bname
FROM (Sailors S NATURAL LEFT JOIN Reserves R)
 FULL OUTER JOIN Boats B ON R.bid=B.bid

Sailors: Reserves: Boats:

SELECT S.sname, R.day, B.bname
FROM (Sailors S NATURAL LEFT JOIN Reserves R) LEFT JOIN Boats B USING(bid)
UNION
SELECT S.sname, R.day, B.bname
FROM Boats B LEFT JOIN (Sailors S NATURAL LEFT JOIN Reserves R) USING(bid)

Same answer as before,
since order doesn't matter

❖

▪

▪

❖

▪

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖
▪

▪

▪

◆

◆

Event

Condition
Action

❖

❖

❖

CREATE TRIGGER insertLog
AFTER INSERT ON Reserves
BEGIN
 INSERT INTO ReservesLog (sid, bid, resDate, madeDate)
 VALUES (new.sid, new.bid, new.date, DATE(‘NOW’));
END;

❖

❖

❖

❖

❖

