
Comp 521 – Files and Databases Fall 2019 1

NoSQL
Graph Databases

Problem Set #4 is graded
Problem Set #6 is done, you will all get 100!

Comp 521 – Files and Databases Fall 2019 2

Agenda

❖ Graph Databases: Mission, Data, Example
❖ A Bit of Graph Theory

▪ Graph Representations
▪ Algorithms: Improving Data Locality (efficient storage)
▪ Graph Partitioning and Traversal Algorithms

❖ Graph Databases
▪ Transactional databases
▪ Non-transactional databases

❖ Neo4j
▪ Basics, Native Java API, Cypher, Behind the Scene

Comp 521 – Files and Databases Fall 2019 3

Graph Databases: Concept
❖ To store entities and relationships between them

▪ Nodes are instances of objects
▪ Nodes have properties, e.g., name
▪ Edges connect nodes and are directed
▪ Edges have types (e.g., likes, friend, …)

❖ Nodes are organized by relationships
▪ Allow to find interesting patterns
▪ example: Get all nodes that are “employee” of

“Big Company” and that “likes” “NoSQL Distilled”

Comp 521 – Files and Databases Fall 2019 4

Graph Databases: Example

source: Sadalage & Fowler: NoSQL Distilled, 2012

Comp 521 – Files and Databases Fall 2019 5

Graph Databases: Representatives

Comp 521 – Files and Databases Fall 2019 6

❖ Data: a set of entities and their relationships
▪ => we need to efficiently represent graphs

❖ Basic operations:
• finding the neighbours of a node,
• checking if two nodes are connected by an edge,
• updating the graph structure, …

▪ => we need efficient graph operations

Graph Database Basics

❖ Graph G = (V, E) is usually modelled as
▪ set of nodes (vertices) V, |V| = n
▪ set of edges E, |E| = m

❖ Which data structure to use?

Comp 521 – Files and Databases Fall 2019 7

Data Structure: Adjacency Matrix
❖ Two-dimensional array A of

n ⨉ n Boolean values
▪ Indexes of the array = node

identifiers of the graph
▪ Boolean value A

ij
 indicates

whether nodes i, j are connected

❖ Variants:
▪ (Un)directed graphs
▪ Weighted graphs…

1 2 3 4 5 6

1 0 1 1 0 0 0

2 1 0 1 1 1 0

3 1 1 0 0 1 0

4 0 1 0 0 0 1

5 0 1 1 0 0 0

6 0 0 0 1 0 0

Comp 521 – Files and Databases Fall 2019 8

Adjacency Matrix: Properties
❖ Pros:

▪ Adding/removing edges
▪ Checking if 2 nodes are

connected

❖ Cons:
▪ Quadratic space: O(n2)
▪ Sparse graphs (mostly 0s)

are common
▪ Adding nodes is expensive
▪ Retrieval the neighbouring

nodes takes linear time: O(n)

1 2 3 4 5 6

1 0 1 1 0 0 0

2 1 0 1 1 1 0

3 1 1 0 0 1 0

4 0 1 0 0 0 1

5 0 1 1 0 0 0

6 0 0 0 1 0 0

Comp 521 – Files and Databases Fall 2019 9

Data Structure: Adjacency List
❖ A dictionary or list of lists,

describing the neighbours
of the key or indexed node
▪ Vector of n pointers to adjacency lists

❖ Undirected graph:
▪ An edge connects nodes i and j
▪ => the adjacency list of i contains

node j and vice versa

❖ Often compressed
▪ Exploiting regularities in graphs

Neighbors[1] = [2,3]
Neighbors[2] = [1,3,5]
Neighbors[3] = [1,2,5]
Neighbors[4] = [2,6]
Neighbors[5] = [2,3]
Neighbors[6] = [4]

Comp 521 – Files and Databases Fall 2019 10

Adjacency List: Properties
❖ Pros:

▪ Getting the neighbours of a node
▪ Cheap addition of nodes
▪ More compact representation of

sparse graphs

❖ Cons:
▪ Checking if an edge

exists between two nodes
• Optimization: sorted lists => logarithmic

scan, but also logarithmic insertion

Neighbors[1] = [2,3]
Neighbors[2] = [1,3,5]
Neighbors[3] = [1,2,5]
Neighbors[4] = [2,6]
Neighbors[5] = [2,3]
Neighbors[6] = [4]

Comp 521 – Files and Databases Fall 2019 11

Data Structure: Incidence Matrix
❖ Two-dimensional Boolean matrix

of n rows and m columns
▪ A column represents an edge

• Nodes that are connected by a certain edge

▪ A row represents a node
• All edges that are connected to the node

E1 E2 E3 E4 E5 E7 E8

1 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0

3 0 1 1 0 0 1 0

4 0 0 0 1 0 0 1

5 0 0 0 0 1 1 0

6 0 0 0 0 0 0 1

 E8

 E4

 E1
 E6

 E2 E3

 E5

Comp 521 – Files and Databases Fall 2019 12

Incidence Matrix: Properties
❖ Pros:

▪ Can represent hypergraphs
• where one edge connects an

arbitrary number of nodes

❖ Cons:
▪ Requires n ⨉ m bits (for most

graphs m >> n)

 E8

 E4

 E1
 E6

 E2 E3

 E5

E1 E2 E3 E4 E5 E7 E8

1 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0

3 0 1 1 0 0 1 0

4 0 0 0 1 0 0 1

5 0 0 0 0 1 1 0

6 0 0 0 0 0 0 1

Comp 521 – Files and Databases Fall 2019 13

Data Structure: Laplacian Matrix
❖ Two-dimensional array

of n ⨉ n integers
▪ Similar structure to adjacency matrix
▪ Diagonal of the Laplacian matrix

indicates the degree of the node
▪ L

ij
 is set to -1 if the two vertices

i and j are connected, 0 otherwise 1 2 3 4 5 6

1 2 -1 -1 0 0 0

2 -1 4 -1 -1 -1 0

3 -1 -1 3 0 -1 0

4 0 -1 0 2 0 -1

5 0 -1 -1 0 2 0

6 0 0 0 -1 0 1

Comp 521 – Files and Databases Fall 2019 14

Laplacian Matrix: Properties
All features of adjacency matrix

❖ Pros:
▪ Analyzing the graph structure by

means of spectral analysis
• Calculating eigenvalues of the matrix

1 2 3 4 5 6

1 2 -1 -1 0 0 0

2 -1 4 -1 -1 -1 0

3 -1 -1 3 0 -1 0

4 0 -1 0 2 0 -1

5 0 -1 -1 0 2 0

6 0 0 0 -1 0 1

Comp 521 – Files and Databases Fall 2019 15

Basic Graph Algorithms
❖ Visiting all nodes:

▪ Breadth-first Search (BFS)
▪ Depth-first Search (DFS)

❖ Shortest path between two nodes
❖ Single-source shortest path problem

▪ BFS (unweighted),
▪ Dijkstra (nonnegative weights),
▪ Bellman-Ford algorithm

❖ All-pairs shortest path problem
▪ Floyd-Warshall algorithm

http://en.wikipedia.org/wiki/Shortest_path_problem

Comp 521 – Files and Databases Fall 2019 16

Improving Data Locality
❖ Performance of the read/write operations

▪ Depends also on physical organization of the data
▪ Objective: Achieve the best “data locality”

❖ Spatial locality:
▪ if a data item has been accessed, the nearby data items

are likely to be accessed in the following computations
• e.g., during graph traversal

❖ Strategy:
▪ in graph adjacency matrix representation, exchange rows

and columns to improve the disk cache hit ratio
▪ Specific methods: BFSL, Bandwidth of a Matrix, ...

Comp 521 – Files and Databases Fall 2019 17

Breadth First Search Layout (BFSL)
❖ Input: vertices of a graph
❖ Output: a permutation of the vertices

○ with better cache performance for graph traversals

❖ BFSL algorithm:
1. Select a node (at random, the origin of the traversal)

2. Traverse the graph using the BFS alg.
• generating a list of vertex identifiers in the order they are visited

3. Take the generated list as the new vertices permutation

Comp 521 – Files and Databases Fall 2019 18

Breadth First Search Layout (2)
❖ Let us recall:

Breadth First Search (BFS)
▪ FIFO queue of frontier vertices

❖ Pros: optimal when starting from the same node
❖ Cons: starting from other nodes

○ The further, the worse

Comp 521 – Files and Databases Fall 2019 19

Matrix Bandwidth: Motivation
● Graph represented by adjacency matrix

Comp 521 – Files and Databases Fall 2019 20

Matrix Bandwidth: Formalization
❖ The minimum bandwidth problem

▪ Bandwidth of a row in a matrix = the maximum distance
between nonzero elements, where one is left of the
diagonal and the other is right of the diagonal

▪ Bandwidth of a matrix = maximum bandwidth of its rows

❖ Low bandwidth matrices are more cache friendly
▪ Non zero elements (edges) clustered about the diagonal

● Bandwidth minimization problem: NP hard
○ For large matrices the solutions are only approximated

Comp 521 – Files and Databases Fall 2019 21

Graph Partitioning
❖ Some graphs are too large to be fully loaded into the

main memory of a single computer
▪ Usage of secondary storage degrades the performance
▪ Scalable solution: distribute the graph on multiple nodes

❖ We need to partition the graph reasonably
▪ Usually for a particular (set of) operation(s)

• The shortest path, finding frequent patterns, BFS, spanning tree search

❖ This is difficult and graph DB are often centralized

Comp 521 – Files and Databases Fall 2019 22

Example: 1-Dimensional Partitioning
❖ Aim: partitioning the graph to solve BFS efficiently

▪ Distributed into shared-nothing parallel system
▪ Partitioning of the adjacency matrix

❖ 1D partitioning:
▪ Matrix rows are randomly assigned to the P nodes

(processors) in the system
▪ Each vertex and the edges emanating from it are owned by

one processor

Comp 521 – Files and Databases Fall 2019 23

Comp 521 – Files and Databases Fall 2019 24

One-Dimensional Partitioning: BFS
❖ BSF with 1D partitioning

1. Each processor has a set of vertices F (FIFO)
2. The lists of neighbors of the vertices in F forms a set of

neighbouring vertices N
• Some owned by the current processor, some by others

3. Messages are sent to all other processors… etc.

❖ 1D partitioning leads to high messaging
▪ => 2D-partitioning of adjacency matrix
▪ … lower messaging but still very demanding

Efficient sharding of a graph can be difficult

Comp 521 – Files and Databases Fall 2019 25

Types of Graph Databases
❖ Single-relational graphs

▪ Edges are homogeneous in meaning
• e.g., all edges represent friendship

❖ Multi-relational (property) graphs
▪ Edges are labeled by type

• e.g., friendship, business, communication

▪ Vertices and edges maintain a set of key/value pairs
• Representation of non-graphical data (properties)
• e.g., name of a vertex, the weight of an edge

Comp 521 – Files and Databases Fall 2019 26

Graph Databases
❖ A graph database = a set of graphs

❖ Types of graph databases:
▪ Transactional = large set of small graphs

• e.g., chemical compounds, biological pathways, …
• Searching for graphs that match the query

▪ Non-transactional = few numbers of very large graphs
• or one huge (not connected) graph

• e.g., Web graph, social networks, …

Comp 521 – Files and Databases Fall 2019 27

❖ Types of Queries
▪ Subgraph queries

• Search for a specific pattern in the graph database
• Query = a small graph or a graph, where some parts are uncertain

• e.g., vertices with wildcard labels
• More general type: allow sub-graph isomorphism

Transactional DBs: Queries

Comp 521 – Files and Databases Fall 2019 28

▪ Super-graph queries
• Search for the graph database members whose whole structure is

contained in the input query

Transactional DBs: Queries (2)

▪ Similarity (approximate matching) queries
• Finds graphs which are similar to a given query graph

• but not necessarily isomorphic
• Key question: how to measure the similarity

Comp 521 – Files and Databases Fall 2019 29

❖ Extract certain characteristics from each graph
○ And index these characteristics for each G

1
,..., G

n

Indexing & Query Evaluation

❖ Query evaluation in transactional graph DB
1. Extraction of the characteristics from query graph q
2. Filter the database (index) and identify a candidate set

• Subset of the G
1
,..., G

n
 graphs that should contain the answer

3. Refinement - check all candidate graphs

Comp 521 – Files and Databases Fall 2019 30

1. Mining-based Graph Indexing Techniques
○ Idea: if some features of query graph q do not exist in data

graph G, then G cannot contain q as its subgraph
○ Apply graph-mining methods to extract some features

(sub-structures) from the graph database members
■ e.g., frequent sub-trees, frequent sub-graphs

○ An inverted index is created for each feature

2. Non Mining-Based Graph Indexing Techniques
○ Indexing of the whole constructs of the graph database

■ Instead of indexing only some selected features

Subgraph Query Processing

Comp 521 – Files and Databases Fall 2019 31

Mining-based Technique
❖ Example method: GIndex [2004]

▪ Indexing “frequent discriminative graphs”
▪ Build inverted index for selected discriminative subgraphs

Comp 521 – Files and Databases Fall 2019 32

Non Mining-based Techniques
❖ Example: GString (2007)

▪ Model the graphs in the context of organic chemistry
using basic structures

• Line = series of vertices connected end to end
• Cycle = series of vertices that form a close loop
• Star = core vertex directly connects to several vertices

Comp 521 – Files and Databases Fall 2019 33

Non-transactional Graph Databases
❖ A few very large graphs

▪ e.g., Web graph, social networks, …
❖ Queries:

▪ Nodes/edges with properties
▪ Neighboring nodes/edges
▪ Paths (all, shortest, etc.)

Comp 521 – Files and Databases Fall 2019 34

Basic Characteristics

❖ Different types of relationships between nodes
▪ To represent relationships between domain entities
▪ Or to model any kind of secondary relationships

• Category, path, time-trees, spatial relationships, …

❖ No limit to the number and kind of relationships

❖ Relationships have: type, start node, end node, own
properties
▪ e.g., “since when” did they become friends

Comp 521 – Files and Databases Fall 2019 35

Relationship Properties: Example

source: Sadalage & Fowler: NoSQL Distilled, 2012

Comp 521 – Files and Databases Fall 2019 36

Graph DB vs. RDBMS
❖ RDBMS designed for a single type of relationship

▪ “Think org charts”
▪ Who works for who
▪ Who is our lowest level common manager

❖ Adding a new relationship implies schema changes

▪ New tables with foreign keys referencing other tables

❖ In RDBMS we model the graph beforehand based on
the traversal we want
▪ If the traversal changes, the data will have to change
▪ Graph DBs: the relationship is not calculated but persisted

Comp 521 – Files and Databases Fall 2019 37

Neo4j: An exemplar Graph database
❖ Open source graph database

▪ The most popular

❖ Initial release: 2007
❖ Written in: Java
❖ OS: cross-platform
❖ Stores data as nodes connected

by directed, typed relationships
▪ With properties on both
▪ Called the “property graph”

Comp 521 – Files and Databases Fall 2019 38

Neo4j: Data Model

❖ Fundamental units: nodes + relationships
❖ Both can contain properties

▪ Key-value pairs
▪ Value can be of primitive type

or an array of primitive type
▪ null is not a valid property value

• nulls can be modelled by
the absence of a key

Comp 521 – Files and Databases Fall 2019 39

Data Model: Relationships
❖ Directed relationships (edges)

▪ Incoming and outgoing edge
• Equally efficient traversal in both directions
• Direction can be ignored

if not needed by the application

▪ Always a start
and an end node

• Can be recursive

Comp 521 – Files and Databases Fall 2019 40

Data Model: Properties
Type Description

boolean true/false

byte 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float 32-bit IEEE 754 floating-point number

double 64-bit IEEE 754 floating-point number

char 16-bit unsigned integers representing
Unicode characters

String sequence of Unicode characters

Comp 521 – Files and Databases Fall 2019 41

What How

get who a person follows outgoing follows relationships, depth one

get the followers of a person incoming follows relationships, depth one

get who a person blocks outgoing blocks relationships, depth one

What How

get the full path of a file incoming file relationships

get all paths for a file incoming file and symbolic link relationships

get all files in a directory outgoing file and symbolic link relationships,
depth one

get all files in a directory,
excluding symbolic links

outgoing file relationships, depth one

get all files in a directory,
recursively

outgoing file and symbolic link relationships

Bonnie Alice

Charle
s

Duke

follows

follows follows

blocks

/

A

CB

E

D

directory

file directory directory

symbolic link
named "F"

file

Examples

Comp 521 – Files and Databases Fall 2019 42

Access to Neo4j
❖ Embedded database in Java system
❖ Language-specific connectors

▪ Libraries to connect to a running Neo4j server

❖ Cypher query language
▪ Standard language to query graph data

❖ HTTP REST API
❖ Gremlin graph traversal language (plugin)
❖ etc.

Comp 521 – Files and Databases Fall 2019 43

Native Java Interface: Example
Node alice = graphDb.createNode();
alice.setProperty("name", "Alice");
Node bonnie = graphDb.createNode();
bonnie.setProperty("name", "Bonnie");

Relationship a2b = alice.createRelationshipTo(bonnie,
FRIEND);
Relationship b2a = bonnie.createRelationshipTo(alice,
FRIEND);

a2b.setProperty("quality", "a good one");
b2a.setProperty("since", 2003);

❖ Undirected edge:
▪ Relationship between the nodes in both directions
▪ INCOMING and OUTGOING relationships from a node

Comp 521 – Files and Databases Fall 2019 44

❖ Path = one or more nodes + connecting relationships
▪ Typically retrieved as a result of a query or a traversal

Data Model: Traversal + Path

❖ Traversing a graph = visiting
its nodes, following
relationships according
to some rules
▪ Typically, a subgraph is visited
▪ Neo4j: Traversal framework

+ Java API, Cypher, Gremlin

Comp 521 – Files and Databases Fall 2019 45

Traversal Framework
❖ A traversal is influenced by

▪ Starting node(s) where the traversal will begin
▪ Expanders – define what to traverse

• i.e., relationship direction and type

▪ Order – depth-first / breadth-first
▪ Uniqueness – visit nodes (relationships, paths) only once
▪ Evaluator – what to return and whether to stop or

continue traversal beyond a current position

Traversal = TraversalDescription + starting node(s)

Comp 521 – Files and Databases Fall 2019 46

Traversal Framework – Java API
❖ org.neo4j...TraversalDescription

▪ The main interface for defining traversals
• Can specify branch ordering breadthFirst() / depthFirst()

❖ .relationships()
▪ Adds the relationship type to traverse

• e.g., traverse only edge types: FRIEND, RELATIVE
• Empty (default) = traverse all relationships

▪ Can also specify direction
• Direction.BOTH
• Direction.INCOMING
• Direction.OUTGOING

Comp 521 – Files and Databases Fall 2019 47

Traversal Framework – Java API (2)
❖ org.neo4j...Evaluator

▪ Used for deciding at each node: should the traversal
continue, and should the node be included in the result

• INCLUDE_AND_CONTINUE: Include this node in the result and
continue the traversal

• INCLUDE_AND_PRUNE: Include this node, do not continue traversal
• EXCLUDE_AND_CONTINUE: Exclude this node, but continue traversal
• EXCLUDE_AND_PRUNE: Exclude this node and do not continue

▪ Pre-defined evaluators:
• Evaluators.toDepth(int depth) /

Evaluators.fromDepth(int depth),
• Evaluators.excludeStartPosition()
• …

Comp 521 – Files and Databases Fall 2019 48

Traversal Framework – Java API (3)
❖ org.neo4j...Uniqueness

▪ Can be supplied to the TraversalDescription
▪ Indicates under what circumstances a traversal may

revisit the same position in the graph

❖ Traverser
▪ Starts actual traversal given a TraversalDescription and

starting node(s)
▪ Returns an iterator over “steps” in the traversal

• Steps can be: Path (default), Node, Relationship

▪ The graph is actually traversed “lazily” (on request)

Comp 521 – Files and Databases Fall 2019 49

Example of Traversal
TraversalDescription desc =
 db.traversalDescription()
 .depthFirst()
 .relationships(Rels.KNOWS, Direction.BOTH)
 .evaluator(Evaluators.toDepth(3));

// node is ‘Ed’ (Node[2])
for (Node n : desc.traverse(node).nodes()) {
 output += n.getProperty("name") + ", ";
}

Output: Ed, Lars, Lisa, Dirk, Peter,

Comp 521 – Files and Databases Fall 2019 50

Cypher Language

❖ Neo4j graph query language
▪ For querying and updating

❖ Declarative – we say what we want
▪ Not how to get it
▪ Not necessary to express traversals

❖ Human-readable
❖ Inspired by SQL and SPARQL
❖ Still growing = syntax changes are often

Comp 521 – Files and Databases Fall 2019 51

Graph Database Summary
❖ Graph databases excel when objects are "indirectly"

related to each other. Friends of friends, Cousins,
your boss's boss's boss.

❖ Graph databases are suited for finding
"structural patterns" in data.
▪ If "X" buys "A", "B", "C" are they likely to buy "D"?

❖ When entites and their relationships are clustered

Comp 521 – Files and Databases Fall 2019 52

Next Time
❖ We finish up

❖ Alternate Final time:
▪ You must have a

documented conflict!
▪ 9am on 12/9

❖ Remaining grading issues
▪ See me next Tuesday

