
Comp 521 – Files and Databases Fall 2019 1

Programming in
Hadoop with
Pig and Hive

Comp 521 – Files and Databases Fall 2019 2

Hadoop Review
• Hadoop is a open-source reimplementation of

– A distributed file system
– A map-reduce processing framework

• Inspired by Google’s description of the
technologies underpinning their search
engine

• It is a layer-cake of APIs, written mostly in
Java, that one can use to write large,
distributed, and scalable applications to
search and process large datasets

Comp 521 – Files and Databases Fall 2019 3

Hadoop Layer Cake
While Hadoop has many advantages, it is not intuitive to translate
every data exploration/manipulation/searching task into a series
of map-reduce operations.

Higher-level languages were needed.

MapReduce (job scheduling,
 assignment, and
 shuffling)

HDFS
(Hadoop Distributed File System)

Hbase (key-value store)

PIG (Data Flow) Hive (SQL emulation)

Comp 521 – Files and Databases Fall 2019 4

High-level Hadoop Interfaces
• PIG – A scripting language for transforming big data

• Useful for “cleaning” and “normalizing” data
• Three parts:

• Pig Latin – The scripting language
• Grunt – A interactive shell
• Piggybank – A repository of Pig extensions

• Deferred execution model

• Hive – A SQL-inspired query-oriented language
• Imposes structure, in the form

of schemas, on Hadoop data
• Creates “data warehouse” layers

Comp 521 – Files and Databases Fall 2019 5

Pig Latin’s data model
• PIG – A dataflow scripting language
• Automatically translated to a series of

Map-Reduce jobs that are run on Hadoop
• It requires no meta-data or schema
• It is extensible, via user-defined functions (UDFs)

written in Java or other languages (C, Python, etc.)
• Provides run-time and debugging environments
• A language specifically designed for data manipulations and

analysis
o Supports join, sort, filter, etc.
o Automatically partitions large operations

into smaller jobs and chains them
together

Comp 521 – Files and Databases Fall 2019 6

Pig Latin scripts describe dataflows
• Every Pig Latin script describes one or more flows of data

through a series of operations that can be processed in parallel
(i.e. the next one can start before the ones providing inputs to it
finish).

• Dataflows are Directed Acyclic Graphs (DAGS)
• Ordering and Scheduling is deferred until a node requires data

Load Foreach

Join

Load

Store

Sort

Load

Join Store

Comp 521 – Files and Databases Fall 2019 7

Pig Latin Processing
• Pig Latin script are processed line by line

• Syntax and References are checked
• Valid statements are added to a logical plan
• Execution is deferred until either a DUMP or

STORE statement is reached
• Reused intermediate results are mapped to a

common node
grunt> roster = LOAD "comp521/NFLrosters" USING PigStorage(',');
grunt> RecentQBs = FILTER roster BY $5='QB' AND $1>2000;
grunt> DUMP RecentQBs;

An HDFS filename, don't worry
about where it really is.

Comp 521 – Files and Databases Fall 2019 8

Pig Relations
● Pig variables are bags of tuples

○ Fields – data items
○ Tuples – a vector of fields
○ Bags – a collection of unordered tuples

■ Unlike Relations in relational databases the tuples
in a Pig bag, need not have the same number of
fields, or the same types

● Pig also supports Maps
○ Maps – a dictionary of name-value pairs

Bag

…

Tuple
 … Tuple

Tuple
Tuple

Tuple

Field 0 Field 1 Field 2 Field N

Comp 521 – Files and Databases Fall 2019 9

Pig Latin Examples
• Pig scripts are easy to read

• FOREACH to specify processing steps for all
tuples in a bagexample

roster = LOAD "comp521/NFLrosters" USING PigStorage(',') AS
 (team:chararray, year:int, jersey:int, name:chararray,
 position:chararray, starts:int, games:int);
recentQBs = FILTER roster BY position='QB' AND year>2000 AND starts > 0;
Groups = GROUP recentQBs BY name;
STORE Groups INTO "recentQBTable";

e1 = LOAD "input/Employees" USING PigStorage(',') AS
 (name:chararray, age:int, zip:int, salary:double);
f = FOREACH e1 GENERATE age, salary; -- a projection
DESCRIBE f; -- gives the schema of relation f
DUMP f;

With AS we define an
"on-the-fly" data schema

Comp 521 – Files and Databases Fall 2019 10

More Pig Latin Examples
• ORDER

• LIMIT, SAMPLE

• JOIN

emp = LOAD "input/Employees" USING PigStorage(',') AS
 (name:chararray, age:int, zip:int, salary:double);
sorted = ORDER emp BY salary;

emp = LOAD "input/Employees" USING PigStorage(',') AS
 (name:chararray, age:int, zip:int, salary:double);
agegroup = GROUP emp BY age;
shortlist = LIMIT agegroup 100;

emp = LOAD "input/Employees" USING PigStorage(',') AS
 (name:chararray, age:int, zip:int, salary:double);
pbk = LOAD "input/Phonebook" USING PigStorage(',') AS
 (name:chararray, phone:chararray);
contact = JOIN emp BY name, pbk BY name;
DESCRIBE contact;
DUMP contact;

Comp 521 – Files and Databases Fall 2019 11

Hive Query Language
• Hive is an alternative/complement to Pig

o Developed by Facebook around 2007
o Hive is a "SQL-like" Query language
o It imposes "Structure" on "Unstructured" data
o Needs a predefined schema definition
o It is also extensible, via user-defined functions (UDFs)

written in Java or other languages (C, Python, etc.)
• Hive isn't a relational database

o No transactions, no isolation, no consistency promises
o Searches and processes Hadoop data stores
o Not suitable for real-time queries and row-level updates
o Generally much higher latency than a DBMS,

but higher performance
o Best for batch jobs over large "immutable" data

Comp 521 – Files and Databases Fall 2019 12

Hive Usage
• Hive is best used to perform analyses and summaries

over large data sets
• Hive requires a meta-store to keep information

about virtual tables
• It evaluates query plans, selects the most promising

one, and then evaluates it using a series of
map-reduce functions

• Hive is best used to answer a single instance of a specific
question whereas Pig is best used to accomplish
frequent reorganization, combining,
and reformatting tasks

Comp 521 – Files and Databases Fall 2019 13

Hive Interface
• Hive is similar to SQL-92
• Based on familiar database concepts, tables,

rows, columns, and schemas
• Makes "Big Data" appear as tables on the fly
• Like Pig, Hive has a command-line shell

• Or it can execute scripts

• There are also GUIs

$ hive
hive>

$ hive -f myquery.hive

Comp 521 – Files and Databases Fall 2019 14

Defining Hive Tables
• A Hive table consists of

• Data linked to a file or multiple files in an HDFS
• Schema stored as mapping of the data to a set of columns

with types
• Schema and Data are separated

• Allows multiple schemas on the same data
$ hive
hive> CREATE TABLE Roster (
 team string,
 year int,
 jersey string,
 player string,
 position string,
 starts int,
 games int)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 STORED AS TEXTFILE;

Comp 521 – Files and Databases Fall 2019 15

Operations on Hive Tables

Table Operation Command Syntax
See current tables hive> SHOW TABLES;

Check schema hive> DESCRIBE Roster;

Change table
name

hive> ALTER TABLE Roster
 RENAME TO PlayedFor;

Add a column hive> ALTER TABLE Roster
 ADD COLUMNS (pid, int);

Drop a partition hive> ALTER TABLE Roster
 DROP PARTITION (team='dallas-cowboys');

Comp 521 – Files and Databases Fall 2019 16

Loading Hive Tables
• Use LOAD DATA to import data into a HIVE table

• No files are modified by Hive, the schema simply
imposes structure on the file as it is read

• You can use the keyword OVERWRITE to
modify previous loaded files

• Loading a file creates a "data warehouse"
• Schema is verified as data is queried
• Missing columns are mapped to NULL

$ hive
hive> LOAD DATA LOCAL INPATH 'comp521/NFLrosters'
 INTO TABLE Roster;

hive> LOAD DATA INPATH 'comp521/NFLrosters'
hive> OVERWRITE INTO TABLE Rosters;
hive> INSERT INTO recentQBs
hive> SELECT * FROM Rosters
hive> WHERE position = 'QB' AND year > 2000
hive> AND starts > 0;

Comp 521 – Files and Databases Fall 2019 17

Hive Queries
• SELECT

• Supports the following:
• WHERE clause
• UNION ALL
• DISTINCT
• GROUP BY and HAVING
• LIMIT
• JOIN,
• LEFT OUTER JOIN, RIGHT OUTER JOIN, OUTER JOIN

• Returned rows are random, and may vary between calls

$ hive
hive> SELECT * FROM recentQBs WHERE name = "*Brady";

Comp 521 – Files and Databases Fall 2019 18

Hive Query Examples

hive> SELECT * FROM customers;
hive> SELECT COUNT(*) FROM customers;
hive>
hive> SELECT first, last, address, zip FROM customers
hive> WHERE orderID > 0
hive> GROUP BY zip;
hive>
hive> SELECT customers.*, orders.*
hive> FROM customers JOIN orders
hive> ON (customers.customerID – orders.customerID);
hive>
hive> SELECT customers.*, orders.*
hive> FROM customers LEFT OUTER JOIN orders
hive> ON (customers.customerID – orders.customerID);

• If you understand SQL, you should be able to follow
• Note: These are queries, not transactions
• The data's state could change between and within a query

Comp 521 – Files and Databases Fall 2019 19

Hive Subqueries
• Hive allows subqueries only within FROM clauses

• Subqueries are generally materialized
(computed and saved as hive tables)

• You MUST to include a name for the subquery result
table

• The columns of a subquery's SELECT list are
available to the outer query

hive> SELECT sid, mid, total FROM
hive> (SELECT sid, mid, refCnt + altCnt AS total
hive> FROM genotype) gtypeTotals
hive> WHERE total > 20;

Comp 521 – Files and Databases Fall 2019 20

Sorting in Hive
• Hive supports ORDER BY, but its result differs from

SQL's
• Only one Reduce step is applied and partial results are

broadcast and combined
• No need for any intermediate files
• This allows optimization to a single MapReduce step

• Hive also supports SORT BY with multiple fields
• Produces a "total ordering" of all results
• Might require multiple MapReduce operations
• Might materialize several intermediate tables

Comp 521 – Files and Databases Fall 2019 21

Summary
• There are two primary "high-level" programming languages

for Hadoop-- Pig and Hive
• Pig is a "scripting language" that excels in specifying a

processing pipeline that is automatically parallelized into
Map-Reduce operations
• Deferred execution allows for optimizations in scheduling

Map-Reduce operations
• Good for general data manipulation and cleaning

• Hive is a "query languge" that borrows heavily from
SQL, good for searching and summarizing data

• Requires the specification of an "external" schema
• Often materializes many more intermediate

results than a DBMS would

