

❖
▪
▪
▪

❖
▪
▪
▪

❖

● Big Data analytics (or data mining)
○ need to process large data volumes quickly
○ want to use computing cluster instead of a

super-computer

● Communication (sending data) between
compute nodes is expensive

⇒ model of “move computing to data”

switch

racks with compute nodes

●

■

■

●

●

■
■

●

○
■

○
■

●
○
○

●

○

■

○

○

❖

○

❖

❖

❖

❖

❖

input data

map function

output data
 (color indicates key)

❖

intermediate output
 (color indicates key)

shuffle (grouping) phase

❖

reduce function

output data

input data

map function

intermediate output
 (color indicates key)

input data

reduce function

output data

shuffle (grouping) phase

Task: Calculate word frequency in a set of documents

map(key, value):
 """ key: document name (ignored)
 value: content of document (words) """

for w in value.split(' '):
 emitIntermediate(w, 1)

reduce(key, values):
 """ key: a word
 values: a list of counts """
 result = 0;
 for v in values:
 result += v
 emit(key, result)

❖

❖

❖

Task: Calculate word frequency in a set of documents

combine(keyValuePairs):
 """ keyValuePairs: a list counts """
 result = {}
 for k, v in keyValuePairs:
 result[k] = result.get(k,0) + v
 for k, v in result:
 emit(k, v);

❖

❖

○

○

○

○
○

○

○

○

○
○
○

○

○

Task: Calculate graph of web links
❖ what pages reference () each page (backlinks)

map(url, html):
 """ url: web page URL
 html: HTML text of the page """
 for tag, contents in html:
 if tag.type == 'a':
 emitIntermediate(tag.href, url)

reduce(key, values):
 """ key: target URLs
 values: a list of source URLs """
 emit(key, values)

Input: (page_URL, HTML_code)
("http://cnn.com", "<html>...link...</html>")
("http://ihned.cz", "<html>...link...</html>")
("http://idnes.cz",
 "<html>... x...
 y...
 z... </html>")

Intermediate output after Map phase:
("http://cnn.com", "http://cnn.com")
("http://cnn.com", "http://ihned.cz")
("http://cnn.com", "http://idnes.cz")
("http://ihned.cz", "http://idnes.cz")
("http://idnes.cz", "http://idnes.cz")

Intermediate result after shuffle phase (the same as output after Reduce phase):
("http://cnn.com", ["http://cnn.com", "http://ihned.cz", "http://idnes.cz"])
("http://ihned.cz", ["http://idnes.cz"])
("http://idnes.cz", ["http://idnes.cz"])

Task: What are the lengths of words in the input text
❖ output = how many words are in the text for each length

map(key, text):
 """ key: document name (ignored)
 text: content of document (words) """
 for w in text.split(' '):
 emitIntermediate(length(w), 1)

reduce(key, values):
 """ key: a length
 values: a list of counts """
 result = 0;
 for v in values:
 result += v
 emit(key, result)

Same reduce
as wordcount

❖ MapReduce uses a “shared nothing” architecture
▪ Nodes operate independently,

• shares no memory
• shares no disk

▪ Common feature of many NoSQL systems

❖ Data partitioned and replicated over many nodes
▪ Pro: Large number of read/write operations per second
▪ Con: Coordination problem – which nodes have my data,

and when?

❖

❖

❖

○
○

❖ Open-source MapReduce framework
▪ Implemented in Java
▪ Named for author's (Doug Cutting)

son's yellow toy elephant

❖ Able to run applications on large clusters of
commodity hardware
▪ Multi-terabyte data-sets
▪ Thousands of nodes

❖ A reimplementation and redesign of Google's
MapReduce and Google File System

web: http://hadoop.apache.org/

❖ Hadoop Common
▪ Common support functions for other Hadoop modules

❖ Hadoop Distributed File System (HDFS)
▪ Distributed file system
▪ High-throughput access to application data

❖ Hadoop YARN
▪ Job scheduling and cluster

resource management

❖ Hadoop MapReduce
▪ YARN-based system for

parallel data processing

source: https://goo.gl/NPuuJr

❖ Assumes:
▪ Streaming data access

• files are read sequentially from the beginning to end

▪ Batch processing rather than interactive user access

❖ Very large data sets and files
❖ Write-once / read-many

▪ A file once created does not change often
▪ This assumption simplifies consistancy

❖ Typical applications for this model:
MapReduce, web-crawlers, data warehouses, …

❖ Master/slave architecture
❖ HDFS exposes a file system namespace

▪ Files are internally split into blocks and distrubuted over
servers called "DataNodes"

▪ Blocks are relatively large (64 MB by default)

❖ NameNode - master server
▪ Manages the file system namespace

• Opening/closing/renaming files and directories
• Arbitrates file access

▪ Determines mapping of blocks to DataNodes

❖ DataNode - manages file blocks
▪ Block read/write/creation/deletion/replication
▪ Usually one per physical node

NameNodeClient2

Client1

DataNode1 DataNode2 DataNode3 DataNode4 DataNoden

22
2

3

3
3

1 1

14 44

2 2

2

3 3

3

1 1

14 4
4

2
2

2

3

3

11
14 4

4

3 3

1 3 4 2

 1' 2' 4' 2'R

❖ NameNode has a structure called FsImage
▪ Entire file system namespace + mapping of blocks to files +

file system properties
▪ Stored in a file in NameNode’s local file system
▪ Designed to be compact

• Loaded in NameNode’s memory (4 GB of RAM is sufficient)

❖ NameNode uses a transaction log called EditLog
▪ to record every change to the file system’s meta data

• E.g., creating a new file, change in replication factor of a file, ..

▪ EditLog is stored in the NameNode’s local file system

❖ Stores data blocks as files on its local file system
▪ Each HDFS block is a separate file
▪ Has no knowledge about HDFS file system

❖ When the DataNode starts up:
▪ It generates a list of all HDFS blocks = BlockReport
▪ It sends the report to NameNode

❖ HDFS can store very large files across a cluster
▪ Each file is a sequence of blocks
▪ All blocks in the file are of the same size

• Except the last one
• Block size is configurable per file (default 128MB)
• Use of large files promotes high I/O throughput

▪ Blocks are replicated for fault tolerance
• Number of replicas is configurable per file

❖ NameNode receives HeartBeat and BlockReport from
each DataNode

▪ BlockReport: list of all blocks on a DataNode

❖ Primary objective: to store data reliably in case of:
▪ NameNode failure
▪ DataNode failure
▪ Network partition

• a subset of DataNodes can lose connectivity with NameNode

❖ In case of absence of a HeartBeat message
▪ NameNode marks DataNodes without HeartBeat and does

not send any I/O requests to them
▪ The death of a DataNode typically results in re-replication

❖ Hadoop MapReduce requires:
▪ Distributed file system (typically HDFS)
▪ Engine that can distribute, coordinate, monitor and gather

the results (typically YARN)

❖ Two main components:
▪ JobTracker (master) = scheduler

• tracks the whole MapReduce job
• communicates with HDFS NameNode to run the task close to the data

▪ TaskTracker (slave on each node) – is assigned a Map or
a Reduce task (or other operations)

• Each task runs in its own JVM

public class Map
 extends Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private final Text word = new Text();

 @Override protected void map(LongWritable key, Text value,
 Context context) throws ... {
 String string = value.toString()
 StringTokenizer tokenizer = new StringTokenizer(string);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 context.write(word, one);
 }
 }
}

public class Reduce
 extends Reducer<Text, IntWritable, Text, IntWritable> {

 @Override
 public void reduce (Text key, Iterable<IntWritable> values,
 Context context) throws ... {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 context.write(key, new IntWritable(sum));
 }
}

source: http://www.dineshonjava.com/2014/11/hadoop-architecture.html#.WLU6aBLyso8

●

●

