
Comp 521 – Files and Databases Fall 2019 1

Database
Crash Recovery

PS #3 graded
Move PS #4 due on 11/7

Comp 521 – Files and Databases Fall 2019 2

Review: The ACID properties

❖ Atomicity: All actions of a transaction happen, or
 none happen.

❖ Consistency: If each Xact is consistent, and the DB starts
 consistent, it ends up consistent.

❖ Isolation: Execution of one Xact is isolated from that
 of other Xacts.

❖ Durability: If a Xact commits, its effects persist.

❖ The Recovery Manager guarantees Atomicity & Durability.

Comp 521 – Files and Databases Fall 2019 3

SAVEPOINT BeforeStuff;
SELECT …
UPDATE …
SELECT …
INSERT …
if (unableToFinish):
 ROLLBACK TO BeforeStuff;
SELECT …
INSERT …
COMMIT;

Motivation
❖ Atomicity:

▪ Transactions may abort (“Rollback”).
❖ Durability:

▪ What if DBMS Crashes?
(“Worse case”, a few unfinished Xacts are lost)

Desired state after system restarts?
– T1, T2 & T3 should

be durable.
– T4 & T5 should

be aborted
(no effect).

crash!
T1
T2
T3
T4
T5

Comp 521 – Files and Databases Fall 2019 4

Assumptions
❖ Concurrency control is in effect.

▪ In particular, locks are acquired on blocks before
reading or writing and are released after commit.

❖ Updates are happening “in place”.
▪ i.e. data is overwritten on (or deleted from)

non-volatile disk.
▪ “In place” implies, we are not using a temporary/in

memory database or cache, but one that is persistent.
❖ Can you think of a simple scheme to

guarantee Atomicity & Durability?

Comp 521 – Files and Databases Fall 2019 5

Recalling the Buffer Pool
Which of the following types of pages might be
found in the buffer pool?
 A) Interior steering nodes of a B+-tree index
 B) Intermediate sorted pages from a recent
 sort-merge-join
 C) A bucket of <key, rid> pairs from
 a hash index
 D) A “dirty” updated page from a
 relation that has yet to be commited to disk
 E) All of the above

Of these, which must be tracked in by the log?

Buffer Pool
disk page

free frame

Disk

Memory

Comp 521 – Files and Databases Fall 2019 6

Handling the Buffer Pool

❖ Force every write to disk? Stall DBMS
until completed

▪ Poor response time.
▪ But provides durability.

❖ Steal buffer-pool frames
from uncommitted Xacts?
(flush dirty frames, only
when a new frame is needed)

▪ If not, poor throughput
(multiple writes to same page).

▪ If so, how can we ensure atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Comp 521 – Files and Databases Fall 2019 7

More on Steal and Force

❖ STEAL (why enforcing Atomicity is hard)
▪ What if a page, P, dirtied by some unfinished Xact

is written to disk to free up a buffer slot, and the
Xact later aborts?

• Must remember the old value of P at steal time (to
UNDO the page write).

❖ NO FORCE (why enforcing Durability is hard)
▪ What if system crashes before a page dirtied by a

committed Xact is flushed to disk?
• Write as little as possible, in a convenient place, at

commit time, to support REDOing modifications.

Comp 521 – Files and Databases Fall 2019 8

Basic Idea: Logging

❖ Record sufficient information
to REDO and UNDO every change in a log.

▪ Write and Commit sequences saved to log (on a
separate disk or replicated on multiple disks).

▪ Minimal info (diff) written to log, so multiple
updates fit in a single log page.

❖ Log: An ordered list of REDO/UNDO actions
▪ Log record contains:

<XID, pageID, offset, length, old data, new data>
▪ and additional control info (which we’ll see soon).

Comp 521 – Files and Databases Fall 2019 9

Write-Ahead Logging (WAL)
Key Idea of WAL: Before writing any page to disk, every update log that

describes any previous change to this page must be
forced to stable storage.

❖ The Write-Ahead Logging Protocol:
1. Modifications of database objects must first be recorded

in the log, and the log updated, before any change to the
actual object

2. Must write all log records of a Xact before it commits.
❖ #1 guarantees Atomicity.
❖ #2 guarantees Durability.
❖ Exactly how is logging (and recovery!) done?

▪ We’ll study the ARIES algorithm.

Comp 521 – Files and Databases Fall 2019 10

WAL &
the Log

❖ Each log record has a unique
Log Sequence Number (LSN).

▪ LSNs are always increasing.
❖ Each data page contains a pageLSN.

▪ LSN of its most recent modification.
❖ System keeps track of a flushedLSN.

▪ Max LSN flushed from the
page buffer so far.

❖ WAL: Before a page is written,
▪ pageLSN ≤ flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN
nextpid
data1,
data2,
...

Log pages
on disk

“Log tail”
 in RAM

Comp 521 – Files and Databases Fall 2019 11

Log Records
Possible log record types:

❖ Update
❖ Commit
❖ Abort
❖ End (signifies end of

commit or abort)
❖ Compensation Log

Records (CLRs)
▪ for UNDO actions

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Comp 521 – Files and Databases Fall 2019 12

Other Log-Related State

❖ Transaction Table:
▪ One entry per active Xact.
▪ Contains XID, status (running/commited/aborted),

and lastLSN due to Xact

❖ Dirty Page Table:
▪ One entry per dirty page in buffer pool
▪ Contains recLSN -- the LSN of the log record which

first dirtied the page

Comp 521 – Files and Databases Fall 2019 13

Log and Table Entries

prevLSN XID type pageID length offset before after

T1000 update 500 1 1800 B Z

T2000 update 600 3 42 DEF GHI

T2000 update 500 2 1799 AZ MN

T1000 update 505 1 128 Q R

pageID recLSN

500

600

505

transID status lastLSN

T1000 running

T2000 running

Log’s “Tail”

Dirty Page Table

Transaction Table

Comp 521 – Files and Databases Fall 2019 14

Normal Execution of an Xact

❖ Series of reads & writes, terminated by
commit or abort.

▪ We will assume that write is atomic on disk.
• In practice, additional details to deal with non-atomic writes.

❖ Strict 2PL.
❖ STEAL, NO-FORCE buffer management, with

Write-Ahead Logging.

Comp 521 – Files and Databases Fall 2019 15

Checkpointing

❖ Periodically, the DBMS creates a checkpoint, to
minimize recovery time in the event of a system
crash. What is written to log and disk:

▪ begin_checkpoint record: Indicates when chkpt began.
▪ end_checkpoint record: Contains current active Xact

table and dirty page table. This is a “fuzzy checkpoint”:
• Xacts continue to run; so these tables are accurate only as of the

time of the begin_checkpoint record.
• No attempt to force dirty pages to disk; effectiveness of

checkpoint limited by oldest unwritten change to a dirty page.
(So it’s a good idea to periodically flush dirty pages to disk!)

▪ Store LSN of chkpt record in a safe place (master record).

Comp 521 – Files and Databases Fall 2019 16

The Big Picture:
What’s Stored Where

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record

Comp 521 – Files and Databases Fall 2019 17

Simple Transaction Abort

❖ For now, consider an explicit abort of a Xact.
▪ No crash involved.

❖ We want to “play back” the log in reverse
order, UNDOing updates.

▪ Get lastLSN of Xact from Xact table.
▪ Can follow chain of log records backward via the

prevLSN field.
▪ Before starting UNDO, write an Abort log record.

• For recovering from crash during UNDO!

Comp 521 – Files and Databases Fall 2019 18

Abort, cont.

❖ To perform UNDO, must have a lock on data!
❖ Before restoring old value of a page, write a

Compensation Log Record (CLR):
▪ Continue logging while you UNDO!!
▪ CLR has one extra field: undonextLSN

• Points to the next LSN to undo (prevLSN of log entry)
▪ CLRs are never Undone (but they might be Redone

when repeating history: guarantees Atomicity!)
❖ At end of UNDO, write an “end” log record.

Comp 521 – Files and Databases Fall 2019 19

Transaction Commit
❖ Write commit record to log.
❖ All log records up to Xact’s lastLSN are

flushed on a commit.
▪ Guarantees that flushedLSN ≥ lastLSN.
▪ Note that log flushes are sequential, synchronous

writes to disk.
▪ Many log records per log page.

❖ Commit() returns.
❖ Write end record to log.

Comp 521 – Files and Databases Fall 2019 20

Crash Recovery: Big Picture

❑ Start from a checkpoint (found
via master record).

❑ ARIES 3 phases. Need to:
– Analysis: Figure out which Xacts

committed since last checkpoint,
and which did not finish.

– REDO all logged actions.
Repeats “writing” history to
recreate buffer pool

– UNDO effects of unfinished
“loser” Xacts.

Oldest log rec.
of Xact active
at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Comp 521 – Files and Databases Fall 2019 21

Recovery: The Analysis Phase
❖ Reconstruct state at checkpoint.

▪ via the end_checkpoint record.
❖ Scan log forward from checkpoint.

▪ Look for End records: Remove Xact from Xact
table because it safely completed.

▪ Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

▪ Update record: If P not in Dirty Page Table,
• Add P to D.P.T., set its recLSN=LSN.

Comp 521 – Files and Databases Fall 2019 22

Recovery: The REDO Phase
❖ We repeat History to reconstruct state at crash:

▪ Reapply all updates (even of aborted Xacts!), redo CLRs.
❖ Scan forward from log record of the smallest

recLSN in the dirty page table. For each CLR or
update log rec LSN, REDO the action unless:

▪ Affected page is not in the Dirty Page Table, or
▪ Affected page is in D.P.T., but has recLSN > LSN, or
▪ pageLSN (in DB) ≥ LSN.

❖ To REDO an action:
▪ Reapply logged changes (restore to before state).
▪ Set pageLSN to LSN. No additional logging!

Comp 521 – Files and Databases Fall 2019 23

Recovery: The UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}
Repeat:

▪ Choose largest LSN among ToUndo.
▪ If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.
▪ If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo
▪ Else this LSN is an update. UNDO the update,

write a CLR, add prevLSN to ToUndo.
Until ToUndo is empty.

Comp 521 – Files and Databases Fall 2019 24

Example of Recovery

begin_checkpoint
 end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

 00
 05
 10
 20
 30
 40
 45
 50
 60

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

prevLSNs

RAM

Comp 521 – Files and Databases Fall 2019 25

Example: Crash During Restart!

begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART
CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05
 10
 20
 30
40,45
 50
 60

 70
80,85

 90

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

undonextLSN

RAM

Comp 521 – Files and Databases Fall 2019 26

Additional Crash Issues

❖ What happens if system crashes during
Analysis? During REDO?

❖ How to limit the amount of work in REDO?
▪ Flush dirty pages asynchronously in the

background.
▪ Watch out for “hot spots”!

❖ How to limit the amount of work in UNDO?
▪ Avoid long-running Xacts.

Comp 521 – Files and Databases Fall 2019 27

Summary of Logging/Recovery
❖ Recovery Manager guarantees Atomicity &

Durability.
❖ Uses WAL to allow STEAL/NO-FORCE w/o

sacrificing correctness.
❖ LSNs identify log records; linked into

backwards chains per transaction (via
prevLSN).

❖ pageLSN allows comparison of data page and
log records.

Comp 521 – Files and Databases Fall 2019 28

Summary, Cont.
❖ Checkpointing: A quick way to limit the

amount of log to scan on recovery.
❖ Recovery works in 3 phases:

▪ Analysis: Forward from checkpoint.
▪ Redo: Forward from oldest recLSN.
▪ Undo: Backward from end to first LSN of oldest

Xact alive at crash.
❖ Upon Undo, write CLRs.
❖ Redo “repeats history”: Simplifies the logic!

