off the mark com by Mark Parisi

Overview of
Query Evaluation

L—"Cconci...
Midterm on Monday o [GONTAES 1S HWING

PROBLEMS IN THE
6-8 pm in SNO14 EEA

(If you need an alternative test time
fill-out the on-line survey)

PS #3 due tonight before midnight

Comp 521 - Files and Databases Fall 2019 1

Overview of Query Evaluation

Q)
‘Q

uery.: SELECT P.name, R.position
FROM Player P, PlayedFor R
WHERE P.pid=R.pid
AND P.dob>'1990-061-01"' AND R.starts>0

Plan: Tree of operations with SELECT P.name, R.position

an algorithm for each |
.) WHERE P.dob>'1990-01-01' AND Rstarts>0
Each operation "pulls" tuples |

from tables via "access paths"

)
“Q

P JOIN R ON P.pid=R.pid
An access path might involve an index, / \
1terat¥on., sortmg, or other apI.)ro.aCh?s. Player P PlayedFor R

<+ Two main issues in query optimization:

For a given query, what plans are considered?
Algorithm to search plan space for cheapest (estimated) plan.
How is the cost of a plan estimated?

« Ideally: Want to find optimal plan.
« Practically: Want to avoid poor plans!

Comp 521 - Files and Databases Fall 2019 2

‘..o Q
°°."

Some Common Technigues

« Algorithms for evaluating queries use the
same simple ideas extensively:

= Indexing: Can use WHERE conditions to
retrieve a subset of tuples (selections, joins)

= [teration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
search keys of an index instead of the table itself.)

= Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

Comp 521 - Files and Databases Fall 2019

...o Q
000“

Statistics and Catalogs

% Need information about all the tables and
indexes involved.

¢ Catalogs typically contain at least:
- # tuples (NTuples) and # pages (NPages) for each relation.
- # distinct key values (NKeys) and NPages for each index.

- Index height, low and high key values (Low/High)
for each tree index.

« Catalogs are updated regularly.

- Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

@,
%

More detailed information (e.g., histograms ot
the values in some field) are sometimes stored.

Comp 521 - Files and Databases Fall 2019

%y

—

Today’s Working Example
+ Consider database with the following two tables:

Player(pid: int, name: string, college: string, dob: date)
PlayedFor(pid: int, tid: int, year: int, starts: int)

Assume each tuple of PlayedFor is 16 bytes, a page
holds, at most, 250 rows, each Player tuple is 100
bytes, and a page holds no more than 40 rows

@,
%*

« Furthermore, assume
400 pages of PlayedFor (< 100,000 records), and

500 pages of Players (< 20,000 records)

Comp 521 - Files and Databases Fall 2019 5

5

;

Example’s Catalog

Attribute_Cat(attr_name: string, rel_name: string, type: string, position: integer)

+ The system catalog is itself a

Attribute_Cat

. . attr_name rel_name type osition

collection of relations/tables _ P
. attr_name Attribute_Cat string 1
(eX' Table attrlbutes, table rel name Attribute_Cat string 2
St&tlSthS, etC-) type Attribute_Cat string 3
KX Catalog tables can be postion Attribute_Cat integer 4
queried just like any other pid Player nteger 1
name Player string 2

table .

college Player string 3
« These queries can be used to | dob Player date 4
examine Query evaluation pid PlayedFor integer 1
tradeoffs tid PlayedFor integer 2
year PlayedFor integer 3
starts PlayedFor integer 4

Comp 521 - Files and Databases Fall 2019

.‘

Access Paths

< An access path is a method of retrieving tuples:

» File scan, or index search that matches the given query’s selection

% A tree index matches (a conjunction of) terms that involve
only attributes in a prefix of the search key.
- E.g., Tree index on <g, b, c> matches the selection a=5 AND b=3,
and a=5 AND b>6, but not b=3.
¢ A hash index matches (a conjunction of) terms that has a
term attribute = value for every attribute in the search key of
the index.

- E.g., Hash index on <g, b, c> matches a=5 AND b=3 AND c=5;
but it does not match b=3, or a=5 AND b=3, or a>5 AND b=3 AND c=5.

Comp 521 - Files and Databases Fall 2019 7

\

A Note on Complex Selections

(dob>"1990-01-01" OR tid=1000 OR year=2018) AND
(name="Chris Jones' OR tid=1000 OR year=2018)

% Selection conditions are first converted to
“sum-of-products”form (ORs of AND clauses)
(dob>"1990-01-01' AND name="'Chris Jones')
OR tid=1000 OR year=1995

« “AND” terms allow us to optimally choose indices
“OR” terms can be generated as independent query
evaluations over the same tables or a subset

Comp 521 - Files and Databases Fall 2019 8

...o Q
000“

One Approach to Selections

« Find the most selective access path, retrieve tuples using
it, and apply any remaining unmatched terms

= Most selective access path: Either an index traversal or file
scan that we estimate requires the fewest page I/Os.

- Terms that match this index reduce the number of tuples
retrieved; other unmatched terms are used to discard tuples,
but do not affect number of tuples/pages fetched.

- Consider dob>'1990-01-01' AND name='Chris Jones'.

- A B+ tree index on dob can be used;
then, name ccould be checked for each retrieved tuple.

- Similarly, a hash index on <name> could be used;
then dob<2000-01-01 checked. Which is faS tor?

Comp 521 - Files and Databases Fall 2019 9

‘..o Q
00."

Using an Index for Selections

« Cost depends on #qualifying tuples, and clustering.

- Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large if table isn't
clustered on search key).

- Assume 10% of players were after before '1990-01-01".

« If the table is clustered by dob (unlikely), the cost is little
more than (0.1 * 500) = 50 I/Os

- If table isn't clustered by dob, then there are likely 4 per page
requiring us to read all 500 pages!

* In reality, players are clustered by the year that they entered the
NFL, so the 50 I/Os might not be that far off since it is correlated
with dob

Comp 521 - Files and Databases Fall 2019 10

‘..o Q
00."

Using an Index for Selections

« Cost depends on #qualifying tuples, and clustering.

- Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large if table isn't
clustered on search key).

- There are 8 players are named 'Chris Jones'.
* A single hash leads us to a hash bucket with 8 Player page ids
* In the worse case the 8 are on different pages, requiring 8 I/Os.
 The hash index on Player.name is very selective for this query
- There are almost 300 players with name like 'Chris %'

o If these are distributed uniformly across the Player pages, we
expect to read almost 300 of the 500 player blocks, making dob
more selective

Comp 521 - Files and Databases Fall 2019 11

‘..o Q
°°.“

Y/
%

Selection

Expensive part is eliminating duplicates.

= SQL systems don’t remove

duplicates unless the keyword SELECT DISTINCT pid, tid
DISTINCT is specified in a query. | FROM PlayedFor

Sorting Approach

= Sort on <pid, tid> and remove duplicates.
(Can optimize by dropping unneeded attributes while sorting.)

Hashing Approach
= Hash on <pid, tid> during scan to create partitions.
Ignore hash-key collisions.
With an index containing both pid and tid, you can step
through the leafs (if tree) compressing duplicates, or
directory of a Hash, however, may be cheaper to sort data
entries!

Comp 521 - Files and Databases Fall 2019 12

Join: Index Nested Loops

foreach tuple r in R: foreach tuple p in P:
foreach tuple p in P: foreach tuple r in R:
if r, op p; : if r, op p; :
add <r, p> to result add <r, p> to result

% If there is an index on the attribute of one relation (say P), if we make
it the inner loop to exploit the index.
= Cost: M + (((M*pg) * cost of finding matching I’ tuples)
= M= #pages of R, p,=# tuples per R page
% For each R tuple, cost of probing S index is ~1.2 for hash index, 2-4 for

B+ tree. Cost of then finding S tuples (assuming Alt. (2) or (3) for data
entries) depends on clustering.

= Clustered index: 11/0 total (typical)
= Unclustered: upto 1 I/O per matching S tuple.

Comp 521 - Files and Databases Fall 2019 13

‘..o Q
°°."

|]

Examples of Index Nested Loops

+ Hash-index on name of Player:

- Scan PlayedFor: 400 page I/Os, 250*400 tuples.

- For each PlayedFor tuple: 1.21/0Os to get bucket index, plus 11/0O to
get a matching Player tuple.

. Total: 400 + (1+1.2)*100000 = 220,400 I/ Os.
+ 'Tree-index on dob of Player:

- Scan Player via Treelndex: traverse tree (3 page I/Os), scan subset of
Player tuples (80 page I/Os, assumes 10% and correlation with dob)

- For each surviving Player tuple: Scan the PlayedFor records

- Total: 83 + (80*40)*400 = 1,280,083 I/Os

- Of course, another index on PlayedFor would help here

= BTW, if the dob filtering was 1%, Total: 83 + (8*40)*400 = 128,083 I/Os

Comp 521 - Files and Databases Fall 2019 14

Join: Sort-Merge (R JOIN S ON i=j) *

« First, Sort R and S on the join attribute

« Scan both sorted tables while "merging"
to output result tuples.

- Advance scan of R until current R-tuple >= current P tuple,
then advance scan of P until current P-tuple >= current R tuple;
do this until current R tuple = current S tuple.

- At this point, all R tuples with same value in R. (current R group)
and all S tuples with same value in S, (current S group) match;
output <r, s.> for all pairs of such tuples.

- Then resume scanning R and S.

+ Ris scanned once; each S group is scanned once
per matching R tuple. (Repeated scaning of S
group is likely to find needed pages in buffer.)

Comp 521 - Files and Databases Fall 2019 15

29013

Trevor Siemian

Northwestern

1991-12-26

pid name college dob pid | tid | year starts
29010 | Austin Shepherd Alabama | 1992-05-28 29010 /1032 | 2015 0
29011 Josh Shirley | Nevada-Las Vegas | 1992-01-04 29011 | 1006 | 2015 0
29012 | Jameill Showers Texas-El Paso 29011 | 1001 | 2016 0

29014

lan Silberman

Boston College

1992-10-10

29012

1012

2015

29015

Shayne Skov

Stanford

1990-07-09

29013

1004

2015

% Cost: MlogM + Nlog N + (M+N)

29013

1004

2016

14

29013

1004

2017

10

29013

1032

2018

29013

1019

2019

We'll use "out-of-core"
external sorting
(Next lecture’s topic)

Pass 1: Read P in 10, 50 block chunks, sort
each one, and then write them back, then
read R in 8, 50 block chunks, sort each,
and write them back (2(400+500))

Pass 2: Read in the head blocks of the 10
sorted P chunks and the heads of 8 sorted
R chunks. Merge the tops of the 10 into
one block and the tops of the 8 into
another (refill any head block when it is
exhasted). These two merged blocks are
then scanned for matching keys (400+500).

= The cost of scanning, M+N, could be M*N (very unlikely!)

% Using only 50 butfer pages, both Players and PlayedFor can be
sorted in 2 passes; total join cost: 3(400+500) = 1800 I/ Os.

Fall 2019

Comp 521 - Files and Databases

16

...o Q
000“

Highlights of Query Optimization =

< Cost estimation: Approximations are an art.

- Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.

- Considers combination of CPU and I/O costs.

« Plan Space: Too large, must be pruned.
- Only the space of left-deep plans is considered.

* Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

- Actual Cartesian products avoided.

Comp 521 - Files and Databases Fall 2019 17

...o Q
000“

Cost Estimation

% For each plan Considered, Alternate Evaluation Trees:
we must estimate cost: SELECT P.name, R.position

" Cost Of each Operation ln plan tree. WHERE P.dob>'1990-01-01' AND R.starts>0

|
* Depends on input cardinalities. PJOIN R ON P.pid=R.pid

* We've already discussed how to / \

estimate the cost of operations Player P PlayedFor R
(sequential scan, index scan,
joins, etc.)
= Must also estimate size of result for Scan 500 Player blocks
each operation in tree! il fore eadn seer A0
* Use information about the input PlayedFor blocks

relations.

* For selections and joins, assume
independence of predicates.

Comp 521 - Files and Databases Fall 2019 18

...o Q
000“

Cost Estimation

% For each plan Considered, Alternate Evaluation Trees:
we must estimate cost: SELECT P.name, R.position

= Cost of each operation in plan tree. WHERE R starts>0

* Depends on input cardinalities.

* We've already discussed how to /
estimate the cost of operations WHERE P.dob>11990-01-01" - PlayedFor R

|
P JOIN R ON P.pid=R.pid

(sequential scan, index scan, Player P
joins, etc.)
= Must also estimate size of result for An index on dob allows
each operation in tree! us to consider around
* Use information about the input 10% of Players

relations.

* For selections and joins, assume
independence of predicates.

Comp 521 - Files and Databases Fall 2019 19

\

Cost Estimation

« For each plan considered,
we must estimate cost:

= Cost of each operation in plan tree.
* Depends on input cardinalities.

* We've already discussed how to
estimate the cost of operations
(sequential scan, index scan,
joins, etc.)

= Must also estimate size of result for
each operation in tree!

* Use information about the input
relations.

* For selections and joins, assume
independence of predicates.

Comp 521 - Files and Databases Fall 2019

Alternate Evaluation Trees:

SELECT P.name, R.position
[

WHERE P.dob>'1990-01-01"'
|
P JOIN R ON P.pid=R.pid

7\

Player P WHERE R.starts>0
I
PlayedFor R

FYI: Only 44% of players

on a team's roster ever
start a game in a given
season

20

...o Q
000“

Cost Estimation

% For each plan Considered, Alternate Evaluation Trees:
we must estimate cost: SELECT P.name, R.position

= Cost of each operation in plan tree. I
* Depends on input cardinalities. PJOIN R ON P.pid=R.pid
* We've already discussed how to / \
estimate the cost of operations ~ HERE P.dob>'1990-01-01' WHERE Ristarts>0
(sequential scan, index scan, Player P PlayedFor R
joins, etc.)
= Must also estimate size of result for
each operation in tree!

10% of Players
joined with
44% of PlayedFor,

* Use 1.nformat10n about the input but how are these
relations. '"non-starters"
* For selections and joins, assume distributed?

independence of predicates.

Comp 521 - Files and Databases Fall 2019 21

\

Size Estimation and Reduction Factors=™="

« Consider a query block: |SELECT attribute list
FROM relation list

< Maximum # tuples in
WHERE term, AND ... AND term

result is the product of
the cardinalities of relations in the FROM clause.

< Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size.
Result cardinality = Max # tuples *RF, *RF, * ... RF,.

- Implicit assumption that terms are independent!

- Term col=value has RF 1/NKeys(I), given index I on col
- Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(12))

- Term col>value has RF (High(I)-value)/(High(I)-Low(I))

k

Comp 521 - Files and Databases Fall 2019 22

...o Q

%iy"'

Motivating Example

SELECT P.name, R.position

FROM Player P, PlayedFor R

WHERE P.pid=R.pid

AND P.dob>'1990-61-01"' AND R.starts>0

» Cost: 400+400*500 = 200,400 I/OQs ~ SELECT Pname, Roposition

WHERE P.dob>'1990-01-01' AND R.starts>0
< By no means the worst plan! P JOIN R O P pid—R pid
pid=R.pi

% Misses several opportunities: N

selections could have been Player P PlayedFor R
. . i 1 terl

“pushed” earlier, no use is made (innerloop) (outer loop)

of any available indexes, etc. We made the outer loop

< Goal of optimization: To find the one with theffewest
more efficient plans that blOCkS’;(C’;gz cwest
compute the same answer.

Comp 521 - Files and Databases Fall 2019 23

Alternative Plan 1 (No Indexes)

¢ Main difference: Push selects.
< With b butffers, cost of plan:
(Sort-Merge Join)
+ Scan Player (500) + P JOIN R ON P.pid=R pid

write temp T1 (50 pages). (while scanning we / \ (while scanning we

write out 50 pages) write out 180 pages)
Scan PlayedFor (400) + WHERE P.dob>'1990-01-01' WHERE R starts>0
|

|
Player P PlayedFor R

SELECT P.name, R.position

write temp T2 (180 pages,
44% of records).
Sort T1 (2*50), sort T2 (2*4*45), merge (50+180)
Total: 1820 page I/Os.
< If we "push" projections, T1 needs only (pid, name),
T2 needs only (pid, position):
Thus T1 fits in 15 pages, and T2 fits in 90 cost drops to under 1500 pages.

Comp 521 - Files and Databases Fall 2019 24

...o Q
000“

Alternative Plan 2 (With Indexes) ™=+

% With a clustered index on pid of PlayedFor,

we find that the 10% of pids born after S -
'1990-01-01" fall in the last 80 of 400 pages. name, f.postion

WHERE R.starts>0
. © 7 . |
e Join column sid is a key for Player. P JOIN R ON P.pid=R pid
—-At most one matching tuple, /

unclustered index on sid OK. WHERE P.dob>'1990-01-01' PlayedFor R
|

Player P
e Decision not to push R.starts>0 before

the join is based on availability of PlayedFor's pid index.
e Cost: Selection of Player tuples with dob > '1990-01-01'
(2 for dob index + 80 get the pages) I/Os;
e For each, must get matching tuple (80*40%(1.2 pid index)) total 3922 1/Os.
But if dob was more selective (2%) we'd get (2+16)+(16*40*1.1)= 786 I/ Os.

Comp 521 - Files and Databases Fall 2019 25

‘..o Q
°°."

Summary

« There are several alternative evaluation algorithms for
each relational operator.

< A query is evaluated by converting it to a tree of
operators and evaluating the operators in the tree.

< Must understand query optimization in order to fully
understand the performance impact of a given database
design (relations, indexes) on a workload (set of queries).
+ 'Two parts to optimizing a query:
Consider a set of alternative plans.
* Must prune search space; typically, left-deep plans only.

- Must estimate cost of each plan that is considered.
* Must estimate size of result and cost for each plan node.
* Key issues: Statistics, indexes, operator implementations.

Comp 521 - Files and Databases Fall 2019 26

