
Comp 521 – Files and Databases Fall 2019 1

Storing and
Buffering Data

Problem Set #2 is due
before midnight tonight.

Problem Set #3 is online
and due on 10/10.

Comp 521 – Files and Databases Fall 2019 2

Disks and Files

❖ A DBMS stores information in non-volatile storage.
▪ Magnetic Disks
▪ Solid State Disks
▪ Tapes

❖ This has major implications for DBMS design!
▪ READ: transfers from disk to main memory (RAM).
▪ WRITE: transfer from disk to RAM,

change it, and then RAM to disk.
▪ Disk transfers are costly (slow) operations, relative to

in-memory operations, so they must be planned and
managed carefully!

Comp 521 – Files and Databases Fall 2019 3

Why Not Store Everything in Memory?

❖ Costs too much. $100 will buy you either 32GB
of RAM or 4TB of disk today (125x).

❖ Main memory is volatile. We want data to be
saved between runs. (Obviously!)

❖ Data Size > Memory Size > Address Space
❖ Typical storage hierarchy:

▪ CPU Registers – temporary variables
▪ Cache – Fast copies of frequently accessed memory locations

(Cache and memory should indistinguishable)
▪ Main memory (RAM) for currently used “addressable” data.
▪ Disk for the main “big data” (secondary storage).

Comp 521 – Files and Databases Fall 2019 4

Storage Hierarchy
❖ CPU Registers – temporary

program variables
❖ Cache – Fast copies of frequently

accessed memory locations (Cache
and memory are indistinguishable)

❖ Main memory (RAM) for currently
“addressable” data.

❖ Disk for files and databases
(secondary storage).

❖ Tapes for archiving older versions
of the data (tertiary storage).

CPU Registers
(16-32)

Cache (Mb)

Main Memory (Gb)

Disk Storage (Tb)

Offline Storage (Pb)

Virt
Mem

Common
Address
 Space

Comp 521 – Files and Databases Fall 2019 5

Disks
❖ Secondary storage device of choice.
❖ Main advantage over tapes:

random access vs. sequential.
❖ Data is stored and retrieved in units called

disk blocks or pages.
❖ Unlike RAM, time to retrieve a disk page can

vary depending upon its location on disk.
▪ Therefore, relative placement of pages on disk has

major impact on DBMS performance!

Comp 521 – Files and Databases Fall 2019 6

Components of a Magnetic Disk
● The platters spin (say, 120rps).
● The arm assembly is moved

in or out to position a head
on a desired track. Tracks
under heads make a cylinder
(imaginary!).

● Only one head reads/writes
at any one time.

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

● In the old days blocks
corresponded to an angular
region of the disk called a
sector. These days there are
more blocks along the outer
tracks than the inner ones.

Comp 521 – Files and Databases Fall 2019 7

Accessing a Disk Page
❖ Time to access (read/write) a disk block:

▪ seek time (moving arms to position disk head on track)
▪ rotational delay (waiting for block to rotate under head)
▪ transfer time (actually moving data to/from disk surface)

❖ Seek time and rotational delay dominate.
▪ Seek time varies from about 2 to 15mS
▪ Rotational delay from 0 to 8.3mS (ave 4.2mS)
▪ Transfer rate is about 3.5mS per 256KB page

(75 MB/sec)
❖ Key to lower I/O cost: reduce seek/rotation

delays! Hardware vs. software solutions?

Comp 521 – Files and Databases Fall 2019 8

Arranging Pages on Disk

❖ Next block concept:
▪ blocks on same track, followed by
▪ blocks on same cylinder, followed by
▪ blocks on adjacent cylinder

❖ Blocks in a file should be arranged
sequentially on disk to minimize seek and
rotational delays.

❖ For a sequential scan, pre-fetching several
pages at a time is a big win!

Comp 521 – Files and Databases Fall 2019 9

Solid State Disk Drives

❖ A single transistor per 1-3
bits stored

❖ Data is read and written a
page at a time, and erased a
block at a time

❖ Typical block sizes:
▪ 128 pages of 4,096+128 bytes

each for a block size of 512 kB
❖ Timing:

▪ Seek time: 0.08 to 0.16 mS
▪ Rotational Delay: 0 mS
▪ Transfer time: 0.5mS per 256Kb

page (500 MB/S)

❖ ~$100 for 500 MB (8x more
than a magnetic drive)

Comp 521 – Files and Databases Fall 2019 10

Disk Space Management

❖ Lowest layer of DBMS manages how space is
used on disk. Abstraction unit is a “page”

❖ Higher levels call upon this layer to:
▪ allocate/de-allocate a page
▪ read/write a page

❖ Request for a sequence of pages must be satisfied
by allocating the pages sequentially on disk!
Higher levels don’t need to know how this is
done, or how free space is managed.

❖ O/S Disk management vs. DBMS

Comp 521 – Files and Databases Fall 2019 11

Buffer Management in a DBMS

❖ Data must be in RAM for DBMS to operate on it!
❖ Table of <frame#, pageid> pairs is maintained. (i.e. which disk page is

in which buffer pool frame)

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

A Buffer Pool is
just a Chunk of
memory that holds
"copies" of disk
pages as needed by
the DBMS. Usually
thousands.

Comp 521 – Files and Databases Fall 2019 12

When a Page is Requested ...

❖ If requested page is not in pool:
▪ Choose a frame for replacement
▪ If frame is dirty (its contents have been modified),

write it to disk
▪ Read requested page into chosen frame

❖ Pin the page and return its address.

● If requests can be predicted (e.g., sequential scans)
 pages can be pre-fetched several pages at a time!

Comp 521 – Files and Databases Fall 2019 13

More on Buffer Management
❖ Requestor of page must unpin a frame when it

is done, and indicate whether page has been
modified:
▪ dirty bit is used for this.

❖ Some pages in the pool are be requested
many times,
▪ Thus, a pin count is used. A page is a candidate for

replacement iff pin count = 0.
❖ Crash recovery protocols may entail

additional I/O when a frame is replaced.
(Write-Ahead Log protocol; more later.)

Comp 521 – Files and Databases Fall 2019 14

Buffer Replacement Policy
❖ Frame is chosen for replacement by a

replacement policy:
▪ Non-dirty, Least-recently-used LRU,

FIFO, Clock, MRU etc.
❖ Policy can have big impact on # of I/O’s;

depends on the access pattern.
❖ Sequential flooding: Nasty collision situation

caused by LRU + repeated sequential scans.
▪ # buffer frames < # pages in file means each page

request causes an I/O. MRU much better in this
situation (but not in all situations, of course).

Comp 521 – Files and Databases Fall 2019 15

Sequential Flooding
Imagine N frames are allocated for a table that
occupies N+1 pages, and is accessed in an inner
loop of a scan

1

1

1

1

2

2 3

2 3 4

5 2 3 4

 1

5 1 3 4

 2

5 1 3 4

 3

Comp 521 – Files and Databases Fall 2019 16

DBMS vs. OS File System
 OS does disk space & buffer mgmt: why not let

OS manage these tasks?

❖ Differences in OS support: portability issues
❖ Some limitations, e.g., files don’t span disks.
❖ Buffer management in DBMS requires ability to:

▪ pin a page in buffer pool, force a page to disk
(important for implementing CC & recovery),

▪ adjust replacement policy, and pre-fetch pages based
on access patterns in typical DB operations.

Comp 521 – Files and Databases Fall 2019 17

Record Formats: Fixed Length

❖ Information about field types same for all
records in a relation; stored in system catalogs.

❖ Finding i’th field does not require scan of
record.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

How is data laid out within a block?

Comp 521 – Files and Databases Fall 2019 18

Record Formats: Variable Length
❖ Two alternative formats (# fields is fixed):

● Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory overhead.

4 \0

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

30, 7 37,10

\0 \0 \0

0

Field
Directory
(offset, size) tuples

Comp 521 – Files and Databases Fall 2019 19

Page Formats: Fixed Length Records

● Record id = <page id, slot #>. In first alternative,
moving records for free space management
changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

.

N M10. . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
11

number
of records

number
of slots

Comp 521 – Files and Databases Fall 2019 20

Page Formats: Variable Length Records

● With a field directory you can reorder records without
moving them. (key when building indices)

● You can also track "free space"

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

(240,30), (100,30), ... (20,30)

20,
30

100,
30

240,
30 N

slots

Comp 521 – Files and Databases Fall 2019 21

Files of Records
❖ Page or block is OK when doing I/O, but

higher levels of DBMS operate on records, and
files of records.

❖ FILE: A collection of pages, each containing a
collection of records. Must support:
▪ insert/delete/modify record
▪ read a particular record (specified using record id)
▪ scan all records (possibly with some conditions on

the records to be retrieved)

Comp 521 – Files and Databases Fall 2019 22

Unordered (Heap) Files

❖ Simplest file structure contains records in no
particular order.

❖ As file grows and shrinks, disk pages are
allocated and de-allocated.

❖ To support record level operations, we must:
▪ keep track of the pages in a file
▪ keep track of free space on pages
▪ keep track of the records on a page

❖ There are many alternatives for keeping track
of this.

Comp 521 – Files and Databases Fall 2019 23

Heap File Implemented as a List

❖ The header page id and Heap file name must
be stored someplace.

❖ Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Comp 521 – Files and Databases Fall 2019 24

Heap File Using a Page Directory

❖ The entry for a page might also include the number
records and/or free bytes on the page.

❖ The directory is itself a collection of pages; linked list
implementation is just one alternative.
▪ Typically smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Comp 521 – Files and Databases Fall 2019 25

System Catalogs
❖ For each relation:

▪ name, file name, file structure (e.g., Heap file)
▪ attribute name and type, for each attribute
▪ index name, for each index
▪ integrity constraints

❖ For each index:
▪ structure (e.g., B+ tree) and search key fields

❖ For each view:
▪ view name and definition

❖ Plus statistics, authorization, buffer pool size, etc.
● Catalogs are themselves stored as relations!

Comp 521 – Files and Databases Fall 2019 26

Sqlite_master
import sqlite3
db = sqlite3.connect("NFL.db")
cursor = db.cursor()
cursor.execute("SELECT * FROM sqlite_master")

for row in cursor:
 print([v for v in row])

Comp 521 – Files and Databases Fall 2019 27

Sqlite_master
['table', 'Team', 'Team', 2, "CREATE TABLE Team(\n tid INTEGER PRIMARY KEY,\n mascot

TEXT DEFAULT ''\n)"]
['table', 'Player', 'Player', 3, 'CREATE TABLE Player(\n pid INTEGER PRIMARY KEY,\n name

TEXT,\n height TEXT,\n weight INTEGER,\n college TEXT,\n dob DATE\n)']
['table', 'PlayedFor', 'PlayedFor', 4, 'CREATE TABLE PlayedFor(\n pid INTEGER,\n tid

INTEGER,\n year INTEGER,\n position TEXT,\n jersey TEXT,\n games INTEGER,\n
starts INTEGER,\n FOREIGN KEY(tid) REFERENCES Team(tid),\n FOREIGN KEY(pid)
REFERENCES Player(pid),\n UNIQUE(pid,tid,year)\n)']

['index', 'sqlite_autoindex_PlayedFor_1', 'PlayedFor', 5, None]
['table', 'TeamLocation', 'TeamLocation', 6, "CREATE TABLE TeamLocation(\n tid INTEGER,\n

year INTEGER,\n place TEXT DEFAULT '',\n headcoach TEXT DEFAULT '',\n
FOREIGN KEY(tid) REFERENCES Team(tid),\n UNIQUE(tid,year)\n)"]

['index', 'sqlite_autoindex_TeamLocation_1', 'TeamLocation', 7, None]
['table', 'Draft', 'Draft', 8, 'CREATE TABLE Draft(\n pid INTEGER PRIMARY KEY,\n year

INTEGER,\n round INTEGER,\n overall INTEGER,\n tid INTEGER,\n FOREIGN
KEY(tid) REFERENCES Team(tid)\n)']

['table', 'Game', 'Game', 1452, 'CREATE TABLE Game(\n season INTEGER,\n week TEXT,\n
date DATE,\n vtid INTEGER,\n vscore INTEGER,\n htid INTEGER,\n hscore
INTEGER,\n notes TEXT,\n FOREIGN KEY(vtid) REFERENCES Team(tid),\n
FOREIGN KEY(htid) REFERENCES Team(tid),\n UNIQUE(season,week,htid)\n)']

['index', 'sqlite_autoindex_Game_1', 'Game', 1453, None]

Comp 521 – Files and Databases Fall 2019 28

Summary
❖ Disks provide cheap, non-volatile storage.

▪ Random access, but cost depends on location of page
on disk; important to arrange data sequentially to
minimize seek and rotation delays.

❖ Buffer manager brings pages into RAM.
▪ Page stays in RAM until released by requestor.
▪ Written to disk when frame chosen for replacement

(which is sometime after requestor releases the page).
▪ Choice of frame to replace based on replacement policy.
▪ Tries to pre-fetch several pages at a time.

Comp 521 – Files and Databases Fall 2019 29

Summary (Contd.)
❖ DBMS vs. OS File Support

▪ DBMS needs features not found in many OS’s, e.g.,
forcing a page to disk, controlling the order of page
writes to disk, files spanning disks, ability to
control pre-fetching and page replacement policy
based on predictable access patterns, etc.

❖ Variable length record format with field offset
directory offers support for direct access to
i’th field and null values.

❖ Slotted page format supports variable length
records and allows records to move on page.

Comp 521 – Files and Databases Fall 2019 30

Summary (Contd.)
❖ File layer keeps track of pages in a file, and

supports abstraction of a collection of records.
▪ Pages with free space identified using linked list

or directory structure (similar to how pages in file
are kept track of).

❖ Indexes support efficient retrieval of records
based on the values in some fields.

❖ Catalog relations store information about
relations, indexes and views. (Information that
is common to all records in a given collection.)

