
Comp 521 – Files and Databases Fall 2019 1

Overview of Storage and Indexing

Problem set #2 is due
before midnight next
Tuesday.

Monitor the website
for announcements
and/or clarifications.

Comp 521 – Files and Databases Fall 2019 2

Data on External Storage
❖ Solid State Disks, Secure Digital (SD) non-volatile memory:

▪ Block addressable storage device, relatively symmetric R/W speeds,
Access latency, but number of write cycles is limitied.

❖ Disks: Can retrieve random page at fixed cost
▪ But reading consecutive pages is much cheaper than

reading them in random order
❖ Tapes: Can only read pages sequentially

▪ Cheaper than disks; used for archival storage
❖ File organization: Method of arranging a file of records on external

storage.
▪ Record id (rid) is sufficient to physically locate record
▪ Indexes are data structures that allow us to find the record ids of

records with given values in index search key fields
❖ Architecture: Buffer manager stages pages from external storage to

main memory buffer pool. File and index layers make calls to the
buffer manager.

Comp 521 – Files and Databases Fall 2019 3

Alternative File Organizations
Many alternatives exist, each ideal for some

situations, and not so good in others:
▪ Heap (random order) files: Suitable when typical

access is a file scan retrieving all records.
▪ Sorted Files: Best if records must be retrieved in

some order, or only a `range’ of records is needed.
▪ Indexes: Data structures to organize records via

trees or hashing.
• Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields
• Updates are much faster than in sorted files.

Comp 521 – Files and Databases Fall 2019 4

Indexes
❖ An index is an auxillary data structure that

accererates queries using the search key fields
of the index.
▪ Any subset of attributes from a relation can be a

search key.
▪ Search key is not necessarily a relation key (a set of

fields that uniquely identify a tuple in a relation).
❖ An index contains a collection of data entries,

and supports efficient retrieval of all data
entries k* with a given key value k.
▪ Given data entry k*, we can find record with key k

in at most one disk I/O. (Details soon …)

Comp 521 – Files and Databases Fall 2019 5

Hash-Based Index
❖ Places all records with a common attribute

together.
❖ Index is a collection of buckets.

▪ Bucket = primary page plus zero or
 more overflow pages.
▪ Buckets contain data entries.

❖ Hashing function, r = h(key) :
Mapping from the index’s search key to a
bucket in which the (data entry for) record r
belongs.

H(x)
key

Comp 521 – Files and Databases Fall 2019 6

Tree-Based Index

❖ Leaf pages contain data entries, and are chained (prev & next)
❖ Non-leaf pages have index entries; used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
(“Ordered” by search key)

Leaf

Comp 521 – Files and Databases Fall 2019 7

Alternative Data/Index Organizations
❖ In data entry k* we store one of the following:

▪ Actual data records with the key k (clustered index)
▪ <k, rid of data record with search key value k>
▪ <k, list of rids of data records with search key k>

❖ Data organization choice is independent of the
indexing method.
▪ Clustered indices save on accesses, but you can only

have 1 clustered index per relation
▪ Unclustered alternatives tradeoff uniformity of

index entries verses size considerations
▪ Often, indices contains auxiliary information

Comp 521 – Files and Databases Fall 2019 8

Index Classifications
❖ Primary vs. Secondary: If search key contains

primary key, then it is called a primary index.
▪ Unique index: Search key contains a candidate key.

❖ Clustered vs. Unclustered:
▪ Clustered: tuples are sorted by search key and stored

sequentially in data blocks
▪ A file can be clustered on at most one search key.
▪ Unclustered: search keys are stored with record ids

(rids) that identify the block containing the associated
tuple

Comp 521 – Files and Databases Fall 2019 9

Clustered vs. Unclustered Index
❖ Index type (Hash or Tree) is independent of the data’s

organization (clustered or unclustered).
▪ To build clustered index, we must first sort the records (perhaps

allowing for some free space on each page for future inserts).
▪ Later inserts might create overflow pages. Thus, eventual order

of data records is “close to”, but not identical to, the sort order.

Index entries

Data entries

direct search for

(Index Blocks)
(Data Blocks)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Comp 521 – Files and Databases Fall 2019 10

Costs / Benefits of Indexing
❖ Adding an index incurs

▪ Storage overhead
▪ Maintenance overhead

❖ Without indexing, searching the records of a
database for a particular record would
require on average

Number of Records * Cost to read a Record * 0.5

(assumes records are in random order)

Comp 521 – Files and Databases Fall 2019 11

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
▪ B: The number of data pages
▪ R: Number of records per page
▪ D: (Average) time to read or write a block
▪ Measuring number of page I/O’s ignores gains of

pre-fetching a sequence of pages; thus, even I/O
cost is only approximated.

▪ Average-case analysis; based on several simplistic
assumptions.

☞ Good enough to show the overall trends!

Comp 521 – Files and Databases Fall 2019 12

Comparing File Organizations
❖ Heap file (random record order;

insert at eof)
❖ Sorted files, sorted on <age, sal>
❖ Clustered B+ tree file, clustered on search

key <age, sal>
❖ Heap file with unclustered B+ tree index

on search key <age, sal>
❖ Heap file with unclustered hash index

on search key <age, sal>

Comp 521 – Files and Databases Fall 2019 13

Operations to Compare
❖ Scan: Fetch all records from disk
❖ Equality search
❖ Range selection
❖ Insert a record
❖ Delete a record

SELECT *
FROM Emp

SELECT *
FROM Emp
WHERE Age = 25 SELECT *

FROM Emp
WHERE Age > 30

INSERT
INTO Emp(Name, Age, Salary)
VALUES(‘Jordan’, 49, 3000000)

DELETE
FROM Emp
WHERE Name =‘Bristow’

Comp 521 – Files and Databases Fall 2019 14

Assumptions in Our Analysis
❖ Heap Files:

▪ Equality selection is on key 🡪 exactly one match
❖ Sorted Files:

▪ Files compacted after deletions.
❖ Indexes:

▪ Search key overhead = 10% size of record
▪ Hash: No overflow buckets.

• 80% page occupancy => File size = 1.25 data size
▪ Tree: 67% occupancy (this is typical).

• Implies file size = 1.5 data size
• Tree Fan-out = F

Comp 521 – Files and Databases Fall 2019 15

Assumptions (contd.)
❖ Scans:

▪ Leaf levels of a tree-index are chained.
▪ Index data-entries plus actual file scanned for

unclustered indexes.
❖ Range searches:

▪ We use tree indexes to restrict the set of data
records fetched, but ignore hash indexes.

Comp 521 – Files and Databases Fall 2019 16

Cost of Operations

☞ Several assumptions underlie these (rough) estimates!
We’ll cover them in the next few lectures.

File Type Scan Equality
Search

Range Search Insert Delete

Heap BD 0.5BD BD 2D Search + D

Sorted BD Dlog2B Dlog2B +
#matches

Search + BD Search + BD

Clustered 1.5BD DlogF1.5B DlogF1.5B +
#matches

Search + D Search + D

Unclustered
tree index

BD(R+0.15) D(1+
logF0.15B)

D(1+logF0.15B+
#matches)

D(2+logF0.15
B)

Search + 2D

Unclustered
hash index

BD(R+0.125) 2D BD 3D Search + 2D

Comp 521 – Files and Databases Fall 2019 17

Indexes and Workload
❖ For each query in the workload:

▪ Which relations does it access?
▪ Which attributes are retrieved?
▪ Which attributes are involved in selection/join conditions?

How selective are the conditions applied likely to be?
❖ For each update in the workload:

▪ Which attributes are involved in selection/join conditions?
How selective are these conditions likely to be?

▪ The type of update (INSERT/DELETE/UPDATE), and the
attributes that are affected.

Comp 521 – Files and Databases Fall 2019 18

Index-Only Plans
❖ Some queries

can be answered
without
retrieving any
tuples from one
or more of the
relations
involved if a
suitable
index is
available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
 E.sal BETWEEN 30000 AND 50000

 <E.dno>
Index stores a
count of tuples
with the same
key

A Tree index on
<E.dno,E.sal>
would give the
anwser

<E. age,E.sal>
 or
<E.sal, E.age>

Average the
index keys

Comp 521 – Files and Databases Fall 2019 19

Example
import time
import sqlite3

Q2 = """SELECT P.name, COUNT(*) as cnt
 FROM Player P, PlayedFor R, Game G
 WHERE R.pid=P.pid AND G.season=R.year
 AND ((R.tid=G.vtid AND G.vscore>G.hscore) OR (R.tid=G.htid AND G.hscore>G.vscore))
 GROUP BY R.pid
 HAVING COUNT(*) > 200"""

db = sqlite3.connect("NFL.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

start = time.time()
cursor.execute(Q2)
playerGames = []
for row in cursor:
 playerGames.append((row['cnt'],row['name']))
print("winning players = %d (%6.4f secs)" % (len(playerGames), time.time()-start))

for row in sorted(playerGames, reverse=True):
 print(row)

Comp 521 – Files and Databases Fall 2019 20

Example
import time
import sqlite3

Q2 = """SELECT P.name, COUNT(*) as cnt
 FROM Player P, PlayedFor R, Game G
 WHERE R.pid=P.pid AND G.season=R.year
 AND ((R.tid=G.vtid AND G.vscore>G.hscore) OR (R.tid=G.htid AND G.hscore>G.vscore))
 GROUP BY R.pid
 HAVING COUNT(*) > 200"""

db = sqlite3.connect("NFL.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

cursor.execute("CREATE INDEX IF NOT EXISTS SeasonWeek ON Game(season,week)")
start = time.time()
cursor.execute(Q2)
playerGames = []
for row in cursor:
 playerGames.append((row['cnt'],row['name']))
print("winning players = %d (%6.4f secs)" % (len(playerGames), time.time()-start))

for row in sorted(playerGames, reverse=True):
 print(row)

Comp 521 – Files and Databases Fall 2019 21

Summary
❖ Alternative file organizations, each suited for

different situations.
❖ If selection queries are frequent, data

organization and indices are important.
▪ Hash-based indexes
▪ Sorted files
▪ Tree-based indexes

❖ An index maps search-keys to associated tuples.
❖ Understanding the workload of an application,

and its performance goals, is essential for a good
design.

