
Comp 521 – Files and Databases Fall 2019 1

Database Application
Development

New version of Problem Set #2
with problems seeming to ask

for two queries corrected..

Comp 521 – Files and Databases Fall 2019 2

Using databases within programs
❖ Often need to access databases from programming

languages
▪ as a file alternative
▪ as shared data
▪ as persistent state

❖ SQL is a direct query language; as such,
it has limitations.

❖ Standard programming languages:
▪ Complex computational processing of the data.
▪ Specialized user interfaces.
▪ Logistics and decision making
▪ Access to multiple databases

Comp 521 – Files and Databases Fall 2019 3

SQL in Application Code
❖ Most often SQL commands are called from

within a host language (e.g., Java or Python)
program.
▪ SQL statements need to reference and modify

host language variables (with special variables
used to return results and status).

▪ Generally, an Application Programming Interface
(API) is used to connect to, issue queries, modify, and
update databases.

Comp 521 – Files and Databases Fall 2019 4

SQL in Application Code (Contd.)
Impedance mismatch:
❖ Differences in the data models used by SQL

and programming languages
❖ SQL relations are (multi-) sets of tuples, with

no a priori bound on number, length, and type.
❖ No such data structure exist in traditional

procedural programming languages such as
C++. (But Python has it!)

❖ SQL language interfaces often support a
mechanism called a cursor to handle this.

Comp 521 – Files and Databases Fall 2019 5

Desirable features of SQL APIs:
❖ Ease of use.

❖ Conformance to standards for existing
programming languages, database query
languages, and development environments.

❖ Interoperability: the ability to use a common
interface to access diverse database
management systems on different operating
systems

Comp 521 – Files and Databases Fall 2019 6

Vendor specific solutions
❖ Oracle PL/SQL: A proprietary PL/1-like language

which supports the execution of SQL queries:
❖ Advantages:

▪ Many Oracle-specific features, high performance, tight
integration.

▪ Advantage, overall performance can be optimized by
analyzing both the queries and the surrounding program
logic.

❖ Disadvantages:
▪ Ties the applications to a specific DBMS.
▪ The application programmer must depend upon the vendor

for the application development environment.
▪ It may not be available for all platforms.

Comp 521 – Files and Databases Fall 2019 7

Vendor Independent solutions

Three basic strategies:
▪ Embed SQL in the host language

(Embedded SQL, SQLJ)
• SQL code appears inline with other host-language code
• Calls are resolved at compile time

▪ SQL call-level interfaces (Dynamic SQL)
• Wrapper functions that pass SQL queries as strings from

the host language to a separate DBMS process

▪ SQL modules or libraries

Comp 521 – Files and Databases Fall 2019 8

Embedded SQL
❖ Approach: Embed SQL in the host language.

▪ A preprocessor converts the SQL statements into
special API calls.
▪ Then a regular compiler is used to compile the

code.
❖ Language constructs:

▪ Connecting to a database:
EXEC SQL CONNECT
▪ Declaring variables:

EXEC SQL BEGIN (END) DECLARE SECTION
▪ Statements:

EXEC SQL Statement;

Comp 521 – Files and Databases Fall 2019 9

Embedded SQL: Variables
◆ There is a need for the host language to share

variable with the database’s SQL interface:

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION

❖ Two special “error” variables:
▪ SQLCODE (long, is negative if an error has occurred)
▪ SQLSTATE (char[6], predefined codes for common errors)

Comp 521 – Files and Databases Fall 2019 10

Cursors

❖ Can declare a cursor on a relation or query
statement (which generates a relation).

❖ Can open a cursor, and repeatedly fetch tuples
and move the cursor as a side-effect, until all
tuples have been retrieved.

❖ In some cases, you can also modify/delete
tuple pointed to by a cursor, and changes are
reflected in the database

Comp 521 – Files and Databases Fall 2019 11

Embedded Database Use
❖ Loading a table

EXEC SQL
INSERT INTO Sailors

VALUES(:c_sname, :c_sid, :c_rating, :c_age);

❖ Executing a query
DECLARE sinfo CURSOR FOR
 SELECT S.sname, S.age
 FROM Sailors S
 WHERE S.rating > 6;

OPEN sinfo;
do {

FETCH sinfo INTO :c_name, :c_age;
 /* do stuff */
 if (c_name == "dustin") {

 ageSum += c_age;
 dustinCount += 1;

 }
} while (SQLSTATE != NO_DATA); /* NO_DATA == “02000” */
CLOSE sinfo;

Comp 521 – Files and Databases Fall 2019 12

Embedded SQL Disadvantages:
❖ Directives must be preprocessed, with subtle

implications for code elsewhere
❖ It is a real pain to debug preprocessed

programs.
❖ The use of a program-development

environment is compromised substantially.
❖ The preprocessor is “compiler vendor” and

“platform” specific.

Comp 521 – Files and Databases Fall 2019 13

Dynamic SQL
❖ SQL query strings are not always known at compile

time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

❖ Example:
char c_sqlstring[]=

{“DELETE FROM Sailors WHERE rating>5”};
EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

Comp 521 – Files and Databases Fall 2019 14

SQL Package and Libraries

❖ In the package approach, invocations to SQL are

made via libraries of procedures , rather than via
preprocessing

❖ Special standardized interface: procedures/objects

❖ Pass SQL strings from language, presents result sets
in a language-friendly way

❖ Supposedly DBMS-neutral
▪ a “driver” traps the calls and translates them into

DBMS-specific code
▪ database can be across a network

Comp 521 – Files and Databases Fall 2019 15

Example module based
❖ Python’s built-in SQLite package

▪ Add-ons for
• MySQL (MySQL for Python),
• Oracle (Oracle+Python, cx_Oracle)
• Postgres (PostgreSQL)
• etc.

❖ Sun’s JDBC: Java API
❖ Part of the java.sql package

Comp 521 – Files and Databases Fall 2019 16

Verdict on SQL Modules
❖ Advantages over embedded SQL:

▪ Cleaner separation of SQL from the host
programming language.
▪ Debugging is much more straightforward, since

no preprocessor is involved.

❖ Disadvantages:
▪ The module libraries are specific to the

programming language and DBMS environment.
Thus, portability is somewhat compromised.

Comp 521 – Files and Databases Fall 2019 17

SQL in Python
❖ Python is a high-level interpreted language

with dynamic types
❖ High-level means that is provide a rich set of

data structures built-in to the language with
strong abstractions from the details of their
implementation

❖ Tuples are a built-in datatype which makes it
particularly compatible with relational
databases

❖ A SQLite API is built into Python.

Comp 521 – Files and Databases Fall 2019 18

Python and SQL Data Types

Python type SQLite type
None NULL
int INTEGER
long INTEGER
float REAL
str (UTF8-encoded) TEXT
unicode TEXT
buffer BLOB

Comp 521 – Files and Databases Fall 2019 19

SQLite type conversions to Python

SQLite type Python type
NULL None

INTEGER intint or long,
depending on size

REAL float

TEXT depends on text_factory,
 unicode by default

BLOB buffer

Comp 521 – Files and Databases Fall 2019 20

Embedding SQL in Python

import sqlite3

db = sqlite3.connect("NFL.db")
cursor = db.cursor()

cursor.execute("""SELECT P.name, R.jersey, R.position
 FROM Player P, PlayedFor R, Team T
 WHERE P.pid=R.pid AND R.tid=T.tid
 AND T.mascot='chiefs' AND R.year=2019 AND R.jersey<>'--'
 ORDER BY R.jersey""")

print(" Name Jersey Position")
for row in sorted(cursor, key=lambda tup: int(tup[1])):
 if (int(row[1]) < 20):
 print("%20s %5s %6s" % row)

db.close()

List the name, jersey number, and position of
2019 Kansas City Chief players with jersey
numbers less than 20.

Comp 521 – Files and Databases Fall 2019 21

More Involved Example
❖ What is then name, jersey number, age, and number

of seasons played for each active quarterback (i.e.
playing on a 2019 roster)?

import sqlite3
import datetime

db = sqlite3.connect("newNFL.db")
cursor = db.cursor()

cursor.execute("""SELECT P.name, R.jersey, P.dob, MIN(R.year), T.mascot
 FROM Player P, PlayedFor R, Team T
 WHERE P.pid=R.pid AND R.tid=T.tid AND dob<>'--'
 AND P.pid in (SELECT pid FROM PlayedFor
 WHERE year=2019 AND position='QB')
 GROUP BY P.pid
 ORDER BY P.dob""")

print(" Name Jersey Age Seasons Team")
for row in cursor:
 ymd = [int(v) for v in row[2].split('-')]
 age = int((datetime.date.today() - datetime.date(ymd[0],ymd[1],ymd[2])).days/365.25)
 seasons = datetime.date.today().year - int(row[3])
 print("%20s %5s %6d %6d %18s" % (row[0],row[1],age,seasons,row[4]))
db.close()

Comp 521 – Files and Databases Fall 2019 22

Where Python and SQL meet
❖ UGLY inter-language semantics

▪ Within SQL we can reference a relation’s attributes
by its field name
▪ From the cursor interface we only see a tuple in

which attributes are indexed by position
▪ Can be a maintenance nightmare

❖ Solution “Row-factories”
▪ Allows you to remap each relation to a local

Python data structure
(Object, dictionary, array, etc.)
▪ Built-in “dictionary-based” row factory

Comp 521 – Files and Databases Fall 2019 23

With a Row-Factory
import sqlite3

db = sqlite3.connect("sailors.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
 FROM Sailors s, Reserves r
 WHERE s.sid=r.sid
 GROUP BY s.sid
 HAVING s.rating < 10""")

for row in cursor.fetchall():
 if (row['reservations'] > 2):
 cursor.execute("""UPDATE Sailors
 SET rating = rating + 1
 WHERE sid=%d""" % row['sid'])
db.commit()
db.close()

Must come before
dependent cursor

Must “commit” to make INSERTs,
DELETEs, and/or UPDATEs
persistent

Comp 521 – Files and Databases Fall 2019 24

Other SQLite in Python Features
❖ Alternatives to iterating over cursor

▪ Fetch the next tuple:
tvar = cursor.fetchone()

▪ Fetch N tuples into a list:
lvar = cursor.fetchmany(N)

▪ Fetch all tuples into a list:
lvar = cursor.fetchall()

❖ Alternative execution statement
▪ Repeat the same command over an iterator
cursor.executemany(“SQL Statement”, args)
▪ Execute a list of ‘;’ separted commands
cursor.executescript(“SQL Statements;”)

Comp 521 – Files and Databases Fall 2019 25

Variable Substitution
❖ Usually your SQL operations will need to use

values from Python variables. You shouldn’t
assemble your query using Python’s string
formatters because doing so is insecure; it
makes your program vulnerable to SQL
injection attacks.

❖ Instead, use the DB-API’s parameter
substitution. Put ‘?’ as a placeholder
wherever you want to use a value, and then
provide a tuple of values as the second
argument to the cursor’s execute() method.

Comp 521 – Files and Databases Fall 2019 26

With a Row-Factory
import sqlite3

db = sqlite3.connect("sailors.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
 FROM Sailors s, Reserves r
 WHERE s.sid=r.sid
 GROUP BY s.sid
 HAVING s.rating < 10""")

for row in cursor.fetchall():
 if (row['reservations'] > 2):
 cursor.execute("""UPDATE Sailors
 SET rating = rating + 1
 WHERE sid=?"””, (row['sid'],))
db.commit()
db.close()

Comp 521 – Files and Databases Fall 2019 27

Next Time
❖ A first look at query performance
❖ Building and using indices

