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Database Application
Development
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New version of Problem Set #2
with problems seeming to ask
for two queries corrected..

PROGRAMMING
LANGUAGE
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Using databases within programs

% Often need to access databases from programming
languages
= as a file alternative
= as shared data
= as persistent state
% SQL is a direct query language; as such,
it has limitations.
% Standard programming languages:
= Complex computational processing of the data.
= Specialized user interfaces.
= Logistics and decision making
= Access to multiple databases
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! SQL in Application Code

& Most often SQL. commands are called from

within a host language (e.g., Java or Python)
program.

- SQL statements need to reference and modity
host language variables (with special variables
used to return results and status).

- Generally, an Application Programming Interface

(API) is used to connect to, issue queries, modify, and
update databases.

Comp 521 - Files and Databases Fall 2019 3



SQL in Application Code (Contd.) ~

Impedance mismatch:

« Differences in the data models used by SQL
and programming languages

« SQL relations are (multi-) sets of tuples, with
no a priori bound on number, length, and type.

« No such data structure exist in traditional
procedural programming languages such as
C++. (But Python has it!)

+ SQL language interfaces often support a
mechanism called a cursor to handle this.
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Desirable features of SQL APIs:

< Ease of use.

+ Conformance to standards for existing
programming languages, database query
languages, and development environments.

+ Interoperability: the ability to use a common
interface to access diverse database
management systems on different operating
systems

Comp 521 - Files and Databases Fall 2019 5



‘..o Q
00."

Vendor specific solutions

< Oracle PL/SQL: A proprietary PL/1-like language
which supports the execution of SQL queries:

+ Advantages:

= Many Oracle-specific features, high performance, tight
integration.

= Advantage, overall performance can be optimized by
analyzing both the queries and the surrounding program
logic.
+ Disadvantages:
= Ties the applications to a specific DBMS.

= The application programmer must depend upon the vendor
for the application development environment.

= [t may not be available for all platforms.
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Vendor Independent solutions

Three basic strategies:

* Embed SQL in the host language
(Embedded SQL, SQLJ)

* SQL code appears inline with other host-language code
 Calls are resolved at compile time

» SQL call-level interfaces (Dynamic SQL)

* Wrapper functions that pass SQL queries as strings from
the host language to a separate DBMS process

= SQL modules or libraries
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Embedded SQL

« Approach: Embed SQL in the host language.

= A preprocessor converts the SQL statements into
special API calls.

= Then a regular compiler is used to compile the
code.
<+ Language constructs:

= Connecting to a database:
EXEC SQL CONNECT

= Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION

= Statements:
EXEC SQL Statement;
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Embedded SQL: Variables

¢ There is a need for the host language to share
variable with the database’s SQL interface:

| —

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

« Two special “error” variables:

= SQLCODE (long, is negative if an error has occurred)
= SQLSTATE (char[6], predefined codes for common errors)
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Cursors

« Can declare a cursor on a relation or query
statement (which generates a relation).

« Can open a cursor, and repeatedly fetch tuples
and move the cursor as a side-effect, until all
tuples have been retrieved.

+ In some cases, you can also modity/delete
tuple pointed to by a cursor, and changes are
reflected in the database
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Embedded Database Use

+ Loading a table

EXEC SQL

INSERT INTO Sailors
VALUES( :c_sname, :c_sid, :c_rating, :c_age);

<+ Executing a query
DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > 6;

| —

OPEN sinfo;
do {
FETCH sinfo INTO :c_name, :c_age;
/* do stuff */
if (c_name == "dustin") {

ageSum += c_age;
dustinCount += 1;

}
} while (SQLSTATE != NO_DATA); /* NO_DATA == “02000" =*/
CLOSE sinfo;
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Embedded SQL Disadvantages:

« Directives must be preprocessed, with subtle
implications for code elsewhere

+ Itis areal pain to debug preprocessed
programs.

« The use of a program-development
environment is compromised substantially.

« The preprocessor is “compiler vendor” and
“platform” specific.
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Dynamic SQL

+ SQL query strings are not always known at compile
time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

< Example:

char c_sqlstring[]=
{“DELETE FROM Sailors WHERE rating>5"};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;
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SQL Package and Libraries

Y/
L X4

In the package approach, invocations to SQL are
made via libraries of procedures, rather than via
preprocessing

+ Special standardized interface: procedures/objects

» Pass SQL strings from language, presents result sets
in a language-triendly way

« Supposedly DBMS-neutral

- a “driver” traps the calls and translates them into
DBMS-specific code

- database can be across a network

Comp 521 - Files and Databases Fall 2019 14



\$ 2

Example module based

< Python’s built-in SQLite package
= Add-ons for
* MySQL (MySQL for Python),
* Oracle (Oracle+Python, cx_Oracle)
* Postgres (PostgreSQL)
* etc.

< Sun’s [DBC: Java API
« Part of the java.sql package
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’ Verdict on SOL Modules

« Advantages over embedded SQL:

= Cleaner separation of SQL from the host
programming language.

= Debugging is much more straightforward, since
no preprocessor is involved.

+ Disadvantages:

= The module libraries are specific to the
programming language and DBMS environment.
Thus, portability is somewhat compromised.
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SQL in Python

+ Python is a high-level interpreted language
with dynamic types

+ High-level means that is provide a rich set of
data structures built-in to the language with
strong abstractions from the details of their
implementation

« Tuples are a built-in datatype which makes it
particularly compatible with relational
databases

« A SQLite API is built into Python.
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g Python and SQL Data Types

Python type SQLite type

None NULL

int INTEGER
lon INTEGER
float REAL

str (UTF8-encoded) TEXT
unicode TEXT

buffer BLOB
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SQLite type conversions to Python

SQLite type Python type

NULL None

INTEGER IntmHorIONCIS
depending on size

REAL float

depends on text_factory,
unicode by default

BLOB buffer

TEXT
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Embedding SQL in Python

List the name, jersey number, and position of
import sqlite3 2019 Kansas City Chief players with jersey
numbers less than 20.

db = sqlite3.connect("NFL.db")

cursor = db.cursor()

cursor.execute("""SELECT P.name, R.jersey, R.position
FROM Player P, PlayedFor R, Team T
WHERE P.pid=R.pid AND R.tid=T.tid
AND T.mascot='chiefs' AND R.year=2019 AND R.jersey<>'--'
ORDER BY R.jersey""")

print(" Name Jersey Position")
for row in sorted(cursor, key=lambda tup: int(tup[1])):
if (int(row[1]) < 20):
print("%20s %5s %6s" % row)

db.close()
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More Involved Example

% What is then name, jersey number, age, and number
of seasons played for each active quarterback (i.e.
playing on a 2019 roster)?

import sqlite3
import datetime

db = sqlite3.connect("newNFL.db")
cursor = db.cursor()

cursor.execute("""SELECT P.name, R.jersey, P.dob, MIN(R.year), T.mascot
FROM Player P, PlayedFor R, Team T
WHERE P.pid=R.pid AND R.tid=T.tid AND dob<>'--'
AND P.pid in (SELECT pid FROM PlayedFor
WHERE year=2019 AND position='QB')
GROUP BY P.pid
ORDER BY P.dob""")

print(" Name Jersey Age  Seasons Team")
for row in cursor:
ymd = [int(v) for v in row[2].split('-")]
age = int((datetime.date.today() - datetime.date(ymd[@],ymd[1],ymd[2])).days/365.25)
seasons = datetime.date.today().year - int(row[3])
print("%20s %5s %6d %6d %18s" % (row[@],row[1],age, seasons,row[4]))
db.close()
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Where Python and SQL meet

<« UGLY inter-language semantics

= Within SQL we can reference a relation’s attributes
by its field name

= From the cursor interface we only see a tuple in
which attributes are indexed by position

= Can be a maintenance nightmare

% Solution “Row-factories”

= Allows you to remap each relation to a local
Python data structure
(Object, dictionary, array, etc.)

» Built-in “dictionary-based” row factory
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With a Row-Factory

Must come before

import sqlite3 dependen‘r cursor

db = sqlite3.connect("sailors.db") A
db.row_factory = sqlite3.Row ‘/g

cursor = db.cursor()

cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
FROM Sailors s, Reserves r
WHERE s.sid=r.sid
GROUP BY s.sid
HAVING s.rating < 10""")

for row in cursor.fetchall():
if (row['reservations'] > 2):
cursor.execute("""UPDATE Sailors
SET rating = rating + 1
WHERE sid=%d""" % row['sid'])

db.commit() \Z \\\
db.close() Must ‘commit' to moke INSERTS,

DELETEs, and/or UPDATEs
Per;ierenJr
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Other SQLite in Python Features

+ Alternatives to iterating over cursor

= Fetch the next tuple:
tvar = cursor.fetchone()

= Fetch N tuples into a list:
lvar = cursor.fetchmany(N)

= Fetch all tuples into a list:
lvar = cursor.fetchall()

% Alternative execution statement

= Repeat the same command over an iterator
cursor.executemany(“SQL Statement”, args)

= Execute a list of *;’ separted commands
cursor.executescript(“SQL Statements;"”)
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Variable Substitution

« Usually your SQL operations will need to use
values from Python variables. You shouldn’t
assemble your query using Python’s string
formatters because doing so is insecure; it
makes your program vulnerable to SQL
injection attacks.

« Instead, use the DB-API’s parameter
substitution. Put “?" as a placeholder
wherever you want to use a value, and then
provide a tuple of values as the second
argument to the cursor’s execute() method.
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With a Row-Factory

import sqlite3

db = sqlite3.connect("sailors.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
FROM Sailors s, Reserves r
WHERE s.sid=r.sid
GROUP BY s.sid
HAVING s.rating < 16""")

for row in cursor.fetchall():
if (row['reservations'] > 2):
cursor.execute("""UPDATE Sailors
SET rating = rating + 1
WHERE sid=?""", (row['sid'],))
db.commit()
db.close()
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Next Time

+ A first look at query performance
+ Building and using indices
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