!“.o A 1;{/)
(y | Yw

Database Application
Development

MoO moO MoO mMOo MOO OOM MMM mMoO MoO
MMM MO0 MO0 MoO MMM MO0 MMM MoO MOO
MOO MOo MOo MoO moO Moo MOo MOo Moo,

New version of Problem Set #2
with problems seeming to ask
for two queries corrected..

PROGRAMMING
LANGUAGE

COwW

Comp 521 - Files and Databases Fall 2019 1

‘..o Q
°°.“

Using databases within programs

% Often need to access databases from programming
languages
= as a file alternative
= as shared data
= as persistent state
% SQL is a direct query language; as such,
it has limitations.
% Standard programming languages:
= Complex computational processing of the data.
= Specialized user interfaces.
= Logistics and decision making
= Access to multiple databases

Comp 521 - Files and Databases Fall 2019

..o Q

'g s
! SQL in Application Code

& Most often SQL. commands are called from

within a host language (e.g., Java or Python)
program.

- SQL statements need to reference and modity
host language variables (with special variables
used to return results and status).

- Generally, an Application Programming Interface

(API) is used to connect to, issue queries, modify, and
update databases.

Comp 521 - Files and Databases Fall 2019 3

SQL in Application Code (Contd.) ~

Impedance mismatch:

« Differences in the data models used by SQL
and programming languages

« SQL relations are (multi-) sets of tuples, with
no a priori bound on number, length, and type.

« No such data structure exist in traditional
procedural programming languages such as
C++. (But Python has it!)

+ SQL language interfaces often support a
mechanism called a cursor to handle this.

Comp 521 - Files and Databases Fall 2019 4

.000

<y
Desirable features of SQL APIs:

< Ease of use.

+ Conformance to standards for existing
programming languages, database query
languages, and development environments.

+ Interoperability: the ability to use a common
interface to access diverse database
management systems on different operating
systems

Comp 521 - Files and Databases Fall 2019 5

‘..o Q
00."

Vendor specific solutions

< Oracle PL/SQL: A proprietary PL/1-like language
which supports the execution of SQL queries:

+ Advantages:

= Many Oracle-specific features, high performance, tight
integration.

= Advantage, overall performance can be optimized by
analyzing both the queries and the surrounding program
logic.
+ Disadvantages:
= Ties the applications to a specific DBMS.

= The application programmer must depend upon the vendor
for the application development environment.

= [t may not be available for all platforms.

Comp 521 - Files and Databases Fall 2019

‘..o Q
00."

Vendor Independent solutions

Three basic strategies:

* Embed SQL in the host language
(Embedded SQL, SQLJ)

* SQL code appears inline with other host-language code
 Calls are resolved at compile time

» SQL call-level interfaces (Dynamic SQL)

* Wrapper functions that pass SQL queries as strings from
the host language to a separate DBMS process

= SQL modules or libraries

Comp 521 - Files and Databases Fall 2019

%y
Embedded SQL

« Approach: Embed SQL in the host language.

= A preprocessor converts the SQL statements into
special API calls.

= Then a regular compiler is used to compile the
code.
<+ Language constructs:

= Connecting to a database:
EXEC SQL CONNECT

= Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION

= Statements:
EXEC SQL Statement;

Comp 521 - Files and Databases Fall 2019 8

‘..o Q
°°."

Embedded SQL: Variables

¢ There is a need for the host language to share
variable with the database’s SQL interface:

| —

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

« Two special “error” variables:

= SQLCODE (long, is negative if an error has occurred)
= SQLSTATE (char[6], predefined codes for common errors)

Comp 521 - Files and Databases Fall 2019

00‘00 h EJQJ ! ;
g jy“' | y ‘

Cursors

« Can declare a cursor on a relation or query
statement (which generates a relation).

« Can open a cursor, and repeatedly fetch tuples
and move the cursor as a side-effect, until all
tuples have been retrieved.

+ In some cases, you can also modity/delete
tuple pointed to by a cursor, and changes are
reflected in the database

Comp 521 - Files and Databases Fall 2019 10

Embedded Database Use

+ Loading a table

EXEC SQL

INSERT INTO Sailors
VALUES(:c_sname, :c_sid, :c_rating, :c_age);

<+ Executing a query
DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > 6;

| —

OPEN sinfo;
do {
FETCH sinfo INTO :c_name, :c_age;
/* do stuff */
if (c_name == "dustin") {

ageSum += c_age;
dustinCount += 1;

}
} while (SQLSTATE != NO_DATA); /* NO_DATA == “02000" =*/
CLOSE sinfo;

Comp 521 - Files and Databases Fall 2019 11

| —

Embedded SQL Disadvantages:

« Directives must be preprocessed, with subtle
implications for code elsewhere

+ Itis areal pain to debug preprocessed
programs.

« The use of a program-development
environment is compromised substantially.

« The preprocessor is “compiler vendor” and
“platform” specific.

Comp 521 - Files and Databases Fall 2019 12

.!00

\
Dynamic SQL

+ SQL query strings are not always known at compile
time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

< Example:

char c_sqlstring[]=
{“DELETE FROM Sailors WHERE rating>5"};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

Comp 521 - Files and Databases Fall 2019 13

‘..o Q
00."

SQL Package and Libraries

Y/
L X4

In the package approach, invocations to SQL are
made via libraries of procedures, rather than via
preprocessing

+ Special standardized interface: procedures/objects

» Pass SQL strings from language, presents result sets
in a language-triendly way

« Supposedly DBMS-neutral

- a “driver” traps the calls and translates them into
DBMS-specific code

- database can be across a network

Comp 521 - Files and Databases Fall 2019 14

\$ 2

Example module based

< Python’s built-in SQLite package
= Add-ons for
* MySQL (MySQL for Python),
* Oracle (Oracle+Python, cx_Oracle)
* Postgres (PostgreSQL)
* etc.

< Sun’s [DBC: Java API
« Part of the java.sql package

Comp 521 - Files and Databases Fall 2019 15

.!00

'g e,
’ Verdict on SOL Modules

« Advantages over embedded SQL:

= Cleaner separation of SQL from the host
programming language.

= Debugging is much more straightforward, since
no preprocessor is involved.

+ Disadvantages:

= The module libraries are specific to the
programming language and DBMS environment.
Thus, portability is somewhat compromised.

Comp 521 - Files and Databases Fall 2019 16

v Rl
SQL in Python

+ Python is a high-level interpreted language
with dynamic types

+ High-level means that is provide a rich set of
data structures built-in to the language with
strong abstractions from the details of their
implementation

« Tuples are a built-in datatype which makes it
particularly compatible with relational
databases

« A SQLite API is built into Python.

Comp 521 - Files and Databases Fall 2019 17

'g s
g Python and SQL Data Types

Python type SQLite type

None NULL

int INTEGER
lon INTEGER
float REAL

str (UTF8-encoded) TEXT
unicode TEXT

buffer BLOB

Comp 521 - Files and Databases Fall 2019 18

\

SQLite type conversions to Python

SQLite type Python type

NULL None

INTEGER IntmHorIONCIS
depending on size

REAL float

depends on text_factory,
unicode by default

BLOB buffer

TEXT

Comp 521 - Files and Databases Fall 2019 19

...o Q
000

5

;

Embedding SQL in Python

List the name, jersey number, and position of
import sqlite3 2019 Kansas City Chief players with jersey
numbers less than 20.

db = sqlite3.connect("NFL.db")

cursor = db.cursor()

cursor.execute("""SELECT P.name, R.jersey, R.position
FROM Player P, PlayedFor R, Team T
WHERE P.pid=R.pid AND R.tid=T.tid
AND T.mascot='chiefs' AND R.year=2019 AND R.jersey<>'--'
ORDER BY R.jersey""")

print(" Name Jersey Position")
for row in sorted(cursor, key=lambda tup: int(tup[1])):
if (int(row[1]) < 20):
print("%20s %5s %6s" % row)

db.close()

Comp 521 - Files and Databases Fall 2019 20

..o Q

'g e

More Involved Example

% What is then name, jersey number, age, and number
of seasons played for each active quarterback (i.e.
playing on a 2019 roster)?

import sqlite3
import datetime

db = sqlite3.connect("newNFL.db")
cursor = db.cursor()

cursor.execute("""SELECT P.name, R.jersey, P.dob, MIN(R.year), T.mascot
FROM Player P, PlayedFor R, Team T
WHERE P.pid=R.pid AND R.tid=T.tid AND dob<>'--'
AND P.pid in (SELECT pid FROM PlayedFor
WHERE year=2019 AND position='QB')
GROUP BY P.pid
ORDER BY P.dob""")

print(" Name Jersey Age Seasons Team")
for row in cursor:
ymd = [int(v) for v in row[2].split('-")]
age = int((datetime.date.today() - datetime.date(ymd[@],ymd[1],ymd[2])).days/365.25)
seasons = datetime.date.today().year - int(row[3])
print("%20s %5s %6d %6d %18s" % (row[@],row[1],age, seasons,row[4]))
db.close()

Comp 521 - Files and Databases Fall 2019 21

‘.‘o Q
00."

Where Python and SQL meet

<« UGLY inter-language semantics

= Within SQL we can reference a relation’s attributes
by its field name

= From the cursor interface we only see a tuple in
which attributes are indexed by position

= Can be a maintenance nightmare

% Solution “Row-factories”

= Allows you to remap each relation to a local
Python data structure
(Object, dictionary, array, etc.)

» Built-in “dictionary-based” row factory

Comp 521 - Files and Databases Fall 2019 22

'g s,

With a Row-Factory

Must come before

import sqlite3 dependen‘r cursor

db = sqlite3.connect("sailors.db") A
db.row_factory = sqlite3.Row ‘/g

cursor = db.cursor()

cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
FROM Sailors s, Reserves r
WHERE s.sid=r.sid
GROUP BY s.sid
HAVING s.rating < 10""")

for row in cursor.fetchall():
if (row['reservations'] > 2):
cursor.execute("""UPDATE Sailors
SET rating = rating + 1
WHERE sid=%d""" % row['sid'])

db.commit() \Z \\\
db.close() Must ‘commit' to moke INSERTS,

DELETEs, and/or UPDATEs
Per;ierenJr

Comp 521 - Files and Databases Fall 2019 23

‘.000 h ZJ’/ »
°°." Y

Other SQLite in Python Features

+ Alternatives to iterating over cursor

= Fetch the next tuple:
tvar = cursor.fetchone()

= Fetch N tuples into a list:
lvar = cursor.fetchmany(N)

= Fetch all tuples into a list:
lvar = cursor.fetchall()

% Alternative execution statement

= Repeat the same command over an iterator
cursor.executemany(“SQL Statement”, args)

= Execute a list of *;’ separted commands
cursor.executescript(“SQL Statements;"”)

Comp 521 - Files and Databases Fall 2019 24

W00 =[5)
g 00s,, y (q L
; % TT

Variable Substitution

« Usually your SQL operations will need to use
values from Python variables. You shouldn’t
assemble your query using Python’s string
formatters because doing so is insecure; it
makes your program vulnerable to SQL
injection attacks.

« Instead, use the DB-API’s parameter
substitution. Put “?" as a placeholder
wherever you want to use a value, and then
provide a tuple of values as the second
argument to the cursor’s execute() method.

Comp 521 - Files and Databases Fall 2019 25

With a Row-Factory

import sqlite3

db = sqlite3.connect("sailors.db")
db.row_factory = sqlite3.Row
cursor = db.cursor()

cursor.execute("""SELECT s.sid, COUNT(r.bid) as reservations
FROM Sailors s, Reserves r
WHERE s.sid=r.sid
GROUP BY s.sid
HAVING s.rating < 16""")

for row in cursor.fetchall():
if (row['reservations'] > 2):
cursor.execute("""UPDATE Sailors
SET rating = rating + 1
WHERE sid=?""", (row['sid'],))
db.commit()
db.close()

Comp 521 - Files and Databases Fall 2019

26

Next Time

+ A first look at query performance
+ Building and using indices

Comp 521 - Files and Databases Fall 2019 27

