
Comp 521 – Files and Databases Fall 2019 1

SQL: Joins, Constraints & Triggers

Problem Set #1 is due before
midnight next Tuesday.

Problem Set #2 will be
posted either tonight or
tomorrow morning.

Comp 521 – Files and Databases Fall 2019 2

Controlling Output Order
❖ SQL’s “ORDER BY” clause is used to sort tuples in

either ascending or descending order.
❖ ORDER BY specifies attributes used in the sort

SELECT *
FROM Sailors
WHERE age > 18
ORDER BY rating

sid sname rating age
29 Brutus 1 33.0
85 Art 3 25.5
95 Bob 3 63.5
22 Dustin 7 45.0
64 Horatio 7 35.0
31 Lubber 8 55.5
32 Andy 8 25.5
74 Horatio 9 35.0
58 Rusty 10 35.0

SELECT *
FROM Sailors
WHERE age > 18
ORDER BY rating DESC

sid sname rating age
58 Rusty 10 35.0
74 Horatio 9 35.0
31 Lubber 8 55.5
32 Andy 8 25.5
22 Dustin 7 45.0
64 Horatio 7 35.0
85 Art 3 25.5
95 Bob 3 63.5
29 Brutus 1 33.0SELECT *

FROM Sailors
WHERE age > 18
ORDER BY rating DESC, sname ASC

sid sname rating age
58 Rusty 10 35.0
74 Horatio 9 35.0
32 Andy 8 25.5
31 Lubber 8 55.5
22 Dustin 7 45.0
64 Horatio 7 35.0
85 Art 3 25.5
95 Bob 3 63.5
29 Brutus 1 33.0

Comp 521 – Files and Databases Fall 2019 3

Controlling output size
❖ The “LIMIT” clause is used to limit the number of

tuples returned by a “SELECT” statement
❖ Useful for seeing a small number of examples, or

“top-X” in combination with “ORDER BY”

SELECT *
FROM Sailors
LIMIT 5

sid sname rating age
22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0

SELECT *
FROM Sailors
ORDER BY rating DESC
LIMIT 5

sid sname rating age
58 Rusty 10 35.0
74 Horatio 9 35.0
31 Lubber 8 55.5
32 Andy 8 25.5
22 Dustin 7 45.0

Comp 521 – Files and Databases Fall 2019 4

Null Values
❖ Field values in a tuple are sometimes

unknown (e.g., a rating has not been assigned)
or inapplicable (e.g., no spouse’s name).
▪ SQL provides a special value null for such situations.

❖ The presence of null complicates many issues. e.g.:
▪ Special operators needed to check if value is/is not null.
▪ Is rating>8 true or false when rating is equal to null? What about

AND, OR and NOT connectives?
▪ Creates the need for a 3-valued logic (true, false and unknown).
▪ Meaning of constructs must be defined carefully. (e.g., WHERE

clause eliminates rows that don’t evaluate to true.)
❖ Joins can also generate null entries

Comp 521 – Files and Databases Fall 2019 5

Creating a Tiny database

Sailors:
CREATE TABLE Sailors(
 sid INTEGER PRMARY KEY,
 sname TEXT,
 rating INTEGER,
 age REAL)

INSERT INTO Sailors(sid,sname,rating,age)
 VALUES (22, 'dustin', 7, 45.0),
 (31, 'lubber', 8, 55.5),
 (58, 'rusty', 10, 35.0)

SELECT * FROM Sailors

Using iSQL.parser("tiny.db", mode='w'), you can execute
the following: The PRIMARY KEY designation is a

simple CONSTRAINT in SQL. Each
PRIMARY KEY must be unique, and
whether it is is checked and
enfoced on INSERTS

Comp 521 – Files and Databases Fall 2019 6

Creating a Tiny database
Using iSQL.parser("tiny.db", mode='w'), you can execute
the following:

Boats:
CREATE TABLE Boats(
 bid INTEGER PRIMARY KEY,
 bname TEXT,
 color TEXT)

INSERT INTO Boats
 VALUES (101, 'Interlake', 'blue'),
 (102, 'Interlake', 'red'),
 (103, 'Clipper', 'green')

SELECT * FROM Boats

The attribute list is optional
on an INSERT if you fill
every column in the same
order given by the CREATE.

Comp 521 – Files and Databases Fall 2019 7

Creating a Tiny database

Reserves:
CREATE TABLE Reserves(
 sid INTEGER,
 bid INTEGER,
 day DATE,
 PRIMARY KEY(sid,bid),
 FOREIGN KEY(sid) REFERENCES Sailors(sid),
 FOREIGN KEY(bid) REFERENCES Boats(bid)
);

INSERT INTO Reserves
 VALUES(22, 101, '1996-10-10'),
 (31, 103, '1996-11-12');

SELECT * FROM Reserves;

And now a relation between these two enities:
A composite
PRIMARY KEY
(i.e. composed of
more than one
attribute) is
defined
separately at the
end of the
CREATE.

A FOREIGN KEY is another
common constraint. It implies that
this attribute is type compatiable
with the referenced attribute in
another table. Optionally it can
disable insertions unless the value
inserted matches a value in a row
with the referenced table,

Comp 521 – Files and Databases Fall 2019 8

Types of JOINS
❖ Tables from our “tiny” sailor database

❖ An “implied” join (in the WHERE clause)

❖ An “explicit” join (in the FROM clause)

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 1996-10-10
31 103 1996-11-12

Sailors: Reserves:

SELECT S.sname, R.day
FROM Sailors S JOIN Reserves R ON S.sid=R.sid

sname day
dustin 1996-10-10
rusty 1996-11-12

SELECT S.sname, R.day
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

sname day
dustin 1996-10-10
rusty 1996-11-12

SELECT S.sname, R.day
FROM Sailors S INNER JOIN Reserves R ON S.sid=R.sid
SELECT S.sname, R.day
FROM Sailors S NATURAL JOIN Reserves R

“INNER” implies *ONLY*
tuples that share the join
condition appear in the
result set. It is the default
JOIN.

"NATURAL" implies that
rows from each table are
combined if

1) they have the same
attribute name

2) they have the same
attribute value

Comp 521 – Files and Databases Fall 2019 9

Left JOINS

❖ A “Left” JOIN returns a tuple for every row of the
first, “left”, relation, even if it requires adding “Null”
values to the output relations

❖ Notice that every row from Sailors has a
corresponding row in the result
(BTW Null maps to None in Python)

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 1996-10-10
31 103 1996-11-12

Sailors: Reserves:

SELECT S.sname, R.day
FROM Sailors S LEFT JOIN Reserves R ON S.sid=R.sid sname day

dustin 1996-10-10
lubber Null
rusty 1996-11-12

SELECT S.sname, R.day
FROM Sailors S NATURAL LEFT JOIN Reserves R

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green

Boats:

Comp 521 – Files and Databases Fall 2019 10

Right JOINS

❖ Likewise a “Right” join returns a tuple for every row
in the second, “right”, relation

❖ Here there is a corresponding row in the
result for every row in "Boats"

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 1996-10-10
31 103 1996-11-12

Sailors: Reserves:
bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green

Boats:

SELECT R.day, B.bname
FROM Reserves R NATURAL RIGHT JOIN Boats B

day bname
1996-10-10 Interlake
Null Interlake
1996-11-12 Clipper

Some databases (like the
one we'll use this
semester) do not support
right joins. But, left and
right are arbitrary

SELECT R.day, B.bname
FROM Boats B NATURAL LEFT JOIN Reserves R

Comp 521 – Files and Databases Fall 2019 11

FULL OUTER Joins

❖ The FULL OUTER JOIN keyword returns all
rows from all tables with the specified
attributes joined or null if there is no match

SELECT S.sname, R.day, B.bname
FROM (Sailors S NATURAL LEFT JOIN Reserves R)
 FULL OUTER JOIN Boats B ON R.bid=B.bid

sname day bname
dustin 1996-10-10 Interlake
lubber Null Null
Null Null Interlake
rusty 1996-11-12 Clipper

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 1996-10-10
31 103 1996-11-12

Sailors: Reserves:
bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green

Boats:

Comp 521 – Files and Databases Fall 2019 12

Emulating FULL OUTER JOIN
We can always emulate a FULL JOIN using the
UNION of two oriented JOINs

SELECT S.sname, R.day, B.bname
FROM (Sailors S NATURAL LEFT JOIN Reserves R) LEFT JOIN Boats B USING(bid)
UNION
SELECT S.sname, R.day, B.bname
FROM Boats B LEFT JOIN (Sailors S NATURAL LEFT JOIN Reserves R) USING(bid)

Same answer as before,
since order doesn't matter

Comp 521 – Files and Databases Fall 2019 13

Integrity Constraints (IC)
❖ An IC describes conditions that every legal instance

of a relation must satisfy.
▪ Inserts/deletes/updates that violate IC’s are disallowed.
▪ Can be used to ensure application semantics (e.g., sid is a

key), or prevent inconsistencies (e.g., sname has to be a
nonempty string, age must be < 200)

❖ Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.
▪ Domain constraints: Field values must be of right type.

Always enforced.

Comp 521 – Files and Databases Fall 2019 14

General Constraint CHECKs

❖ CHECK clause
❖ Useful when more

general ICs than
keys are involved.

❖ Example: All
ratings must be
between 1 and 10

CREATE TABLE Sailors(
sid INTEGER,
sname TEXT,
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)

Comp 521 – Files and Databases Fall 2019 15

More complicated CHECKs
❖ Constraints can be named.
❖ Checks can contain nested subqueries
❖ Example: Disallow reservations of boats named

“Interlake”
by sailors
with ratings
less than 7

❖ “bid” and “sid”
refer to values
from the
associated
INSERT or UPDATE

CREATE TABLE Reserves(
sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT NoInterlakeIfLessThan7
CHECK (‘Interlake’ <> (SELECT B.bname

 FROM Boats B
 WHERE B.bid=bid)

 OR 7 <= (SELECT S.rating
 FROM Sailor S
 WHERE S.sid=sid))

Comp 521 – Files and Databases Fall 2019 16

Constraints Over Multiple Relations

❖ Awkward and
wrong!

❖ If Sailors is
empty, the
number of Boats
tuples can be
anything!

❖ ASSERTION is the
right solution;
not associated
with either table.

CREATE TABLE Sailors(
 sid INTEGER,

sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Comp 521 – Files and Databases Fall 2019 17

Triggers
❖ Trigger: procedure that starts automatically if

specified changes occur to the DBMS

❖ Triggers have three parts:
▪ Event (that activates the trigger)
▪ Condition (tests whether the triggers should run)
▪ Action (what happens if the trigger runs)

Comp 521 – Files and Databases Fall 2019 18

Triggers: Example
◆ Suppose there was a rule that “no one with a rating less than 5

can reserve a green boat”. The following trigger would
enforce this rule, and generate a failure message:

CREATE TRIGGER RatingRuleForGreen
BEFORE INSERT ON Reserves
BEGIN
 SELECT RAISE(FAIL, 'Sailor is not qualified’)
 WHERE EXISTS (SELECT * FROM Sailors, Boats
 WHERE sid = new.sid AND rating < 5
 AND bid = new.bid AND color = 'green');
END;

◆ Note the special variable new is used for accessing
parameters of the invoking INSERT query

Event

Condition
Action

Comp 521 – Files and Databases Fall 2019 19

Triggers: Another Example
❖ Changes in one table can cause side-effects in

other tables via triggers
❖ Example “Event Logging”
❖ We know dates of reservations, but not when

they were made. This can be remedied using
a trigger as follows:

CREATE TRIGGER insertLog
AFTER INSERT ON Reserves
BEGIN
 INSERT INTO ReservesLog (sid, bid, resDate, madeDate)
 VALUES (new.sid, new.bid, new.date, DATE(‘NOW’));
END;

Comp 521 – Files and Databases Fall 2019 20

Summary

❖ NULLs provide a means for representing
“unspecified” attribute values

❖ NULLs can be generated by special JOINs
❖ Wide range of JOIN operations-- Some retain the

cardinality of specified relations
❖ SQL allows specification of rich integrity

constraints
❖ Triggers respond to changes in the database

