
Comp 521 – Files and Databases                                       Fall 2019 1

SQL:  Basic Queries

Problem Set #1 
is now online



Comp 521 – Files and Databases                                       Fall 2019 2

Structured Query Language (SQL)
❖ Introduced in 1974 by IBM
❖ “De facto” standard db query language
❖ Caveats

▪ Standard has evolved 
(major revisions in 1992 and 1999)
▪ Semantics and Syntax may vary slightly among 

DBMS implementations



Comp 521 – Files and Databases                                       Fall 2019 3

“Baby” Example Instances

❖ We will start with these 
instances of the Sailors 
and Reserves relations 
in our examples.

❖ If the key for the 
Reserves relation 
contained only the 
attributes sid and bid, 
how would the 
semantics differ?

Reserves:

Sailors:



Comp 521 – Files and Databases                                       Fall 2019 4

Basic SQL Query

❖ target-list  A list of attributes of relations in relation-list
❖ relation-list  A list of relation names (possibly with a 

range-variable after each name).
❖ qualification  Comparisons (Attr op const or Attr1 op Attr2, 

where op is one of <, >, =, <=, >=, <>)  combined using AND, 
OR and NOT.

❖ DISTINCT is an optional keyword indicating that the answer 
should not contain duplicates.  By default duplicates are not 
eliminated!  

SELECT  [DISTINCT]  target-list
FROM    relation-list
WHERE   qualification



Comp 521 – Files and Databases                                       Fall 2019 5

Conceptual Evaluation Strategy

❖  Semantics of an SQL query defined in terms of the 
following conceptual evaluation strategy:
▪ Compute the cross-product of the relation-list.
▪ Select tuples (rows) if they satisfy qualifications.
▪ Select attributes (columns) in the target-list.
▪ If DISTINCT is specified, eliminate duplicate rows.

❖ This strategy is probably the least efficient way to 
compute a query!  An optimizer will find more 
efficient strategies to compute the same answers.



Comp 521 – Files and Databases                                       Fall 2019 6

Example of Conceptual Evaluation
SELECT  S.sname
FROM    Sailors S, Reserves R
WHERE   S.sid=R.sid AND R.bid=103

sname

rusty

Outputs:



Comp 521 – Files and Databases                                       Fall 2019 7

Table Aliases (Variables)
❖ Really needed only if the same relation 

appears more than once in the FROM clause. 
The previous query can also be written as:

SELECT  S.sname
FROM    Sailors S, Reserves R
WHERE   S.sid=R.sid AND bid=103

SELECT  sname
FROM    Sailors, Reserves 
WHERE   Sailors.sid=Reserves.sid AND bid=103

Aliases provide a 
convenient 
shorthand for
referencing tablesOR



Comp 521 – Files and Databases                                       Fall 2019 8

Find sailors who’ve reserved at least one boat

❖ Why is the DISTINCT keyword useful here?
❖ What is the effect of replacing S.sid by S.sname in 

the SELECT clause?  
❖ Does DISTINCT work as expected in this case?
❖ Just because a query appears to gives a correct 

answer on a specific database instance, does not 
mean that it is correct!

SELECT  DISTINCT S.sid
FROM    Sailors S, Reserves R
WHERE   S.sid=R.sid



Comp 521 – Files and Databases                                       Fall 2019 9

Expressions and Strings

❖ Illustrates use of arithmetic expressions and string pattern 
matching:  Find triples (of ages of sailors and two fields defined by 
expressions) for sailors whose names have ‘us’ as the second and 
third letter of their name.

❖ AS renames fields in result. (Some SQL implementations allow 
the use of ‘newalias=expr‘ as well)

❖ LIKE is used for approximate string matching. “_” stands for 
any one character and “%” stands for 0 or more arbitrary 
characters.  

SELECT S.age, S.age*12.0 AS ageMonths, 10-S.rating AS revRating
FROM   Sailors S
WHERE  S.sname LIKE ‘_us%’



Comp 521 – Files and Databases                                       Fall 2019 10

A more extensive example
❖ “Infant” Sailors/Reserves/Boats instance

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Sailors:                                            Reserves:                             Boats:



Comp 521 – Files and Databases                                       Fall 2019 11

Find sid’s of sailors who’ve reserved a 
red or a green boat

❖ Two approaches
❖ If we replace OR by AND in 

the first version, what do we 
get?

❖ UNION: Can be used to 
compute the union of any 
two union-compatible sets of 
tuples (which are 
themselves the result of 
SQL queries).

❖ Also available:  EXCEPT  
(What do we get if we 
replace UNION by 
EXCEPT?)

SELECT DISTINCT S.sname, S.sid
FROM   Sailors S, Boats B, Reserves R
WHERE  S.sid=R.sid AND R.bid=B.bid
AND    (B.color= "red" OR B.color="green")

SELECT S.sname, S.sid
FROM   Sailors S, Boats B, Reserves R
WHERE  S.sid=R.sid AND R.bid=B.bid
AND    B.color="red"
UNION
SELECT S.sname, S.sid
FROM   Sailors S, Boats B, Reserves R
WHERE  S.sid=R.sid AND R.bid=B.bid
AND    B.color="green"

EXCEPT



Comp 521 – Files and Databases                                       Fall 2019 12

Find sid’s of sailors who’ve reserved a 
red and a green boat

❖ Solution 1: Multiple instancing of 
the same relation in the 
relation-list using another 
variable

❖ Solution 2: INTERSECT: 
Can be used to compute the 
intersection of any two 
union-compatible sets of 
tuples. 

❖ Consider the symmetry 
of the UNION, EXCEPT,
and INTERSECT queries 
versus the first, multiple 
instancing version.

SELECT DISTINCT S.sname, S.sid
FROM   Sailors S, Boats B1, Reserves R1,
                  Boats B2, Reserves R2
WHERE  S.sid=R1.sid AND R1.bid=B1.bid
  AND  S.sid=R2.sid AND R2.bid=B2.bid
  AND (B1.color="red" AND B2.color="green")

SELECT S.sname, S.sid
FROM   Sailors S, Boats B, Reserves R
WHERE  S.sid=R.sid AND R.bid=B.bid
  AND  B.color="red"
INTERSECT
SELECT S.sname, S.sid
FROM   Sailors S, Boats B, Reserves R
WHERE  S.sid=R.sid AND R.bid=B.bid
  AND  B.color="green"



Comp 521 – Files and Databases                                       Fall 2019 13

Nested Queries

❖ A very powerful feature of SQL:  a WHERE 
clause can itself contain an SQL query!  

❖ To find sailors who’ve reserved #103, use IN.
❖ To understand semantics of nested queries, think of a 

nested loops evaluation:  For each Sailors tuple, check the 
qualification by computing the subquery.

SELECT S.sid, S.sname
FROM    Sailors S
WHERE  S.sid NOT IN  (SELECT  DISTINCT R.sid
                                          FROM  Reserves R
                                          WHERE  R.bid=103)

Find names of sailors who’ve never reserved boat #103:



Comp 521 – Files and Databases                                       Fall 2019 14

Nested Queries with Correlation

❖ EXISTS is another set comparison operator, like IN.  
❖ Illustrates why, in general, a subquery must be 

re-evaluated for each Sailors tuple.

SELECT  S.sid, S.sname
FROM    Sailors S
WHERE   EXISTS (SELECT   *
                FROM     Reserves R
                WHERE    S.sid=R.sid)

Find names of sailors who’ve reserved any boat:
Correlation is when an inner

SELECT references relation 
variables of outer SELECT 



Comp 521 – Files and Databases                                       Fall 2019 15

More on Set-Comparison Operators
❖ We’ve already seen IN, EXISTS and UNIQUE.  Can also 

use NOT IN, NOT EXISTS and NOT UNIQUE.
❖ Also available:  op ANY, op ALL,  op IN
❖ Find sailors whose rating is greater than that of some 

sailor called Horatio:
SELECT  *
  FROM  Sailors S
 WHERE  S.rating > ANY (SELECT  S2.rating
                          FROM  Sailors S2
                         WHERE  S2.sname='Horatio')

Not every SQL dialect supports ANY and ALL. 
However, min() and max() functions can usually 

be used to achieve the desired effect

SELECT  *
  FROM  Sailors S
 WHERE  S.rating > (SELECT  min(S2.rating)
                    FROM    Sailors S2
                    WHERE   S2.sname='Horatio')



Comp 521 – Files and Databases                                       Fall 2019 16

Rewriting INTERSECT Queries Using IN

❖ Similarly, EXCEPT queries re-written using NOT IN.  

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT  DISTINCT S.sid, S.sname
  FROM  Sailors S, Boats B, Reserves R
 WHERE  S.sid=R.sid AND R.bid=B.bid AND B.color='red'
   AND  S.sid IN (SELECT  S2.sid
                    FROM  Sailors S2, Boats B2, Reserves R2
                   WHERE  S2.sid=R2.sid AND R2.bid=B2.bid
                     AND  B2.color='green')



Comp 521 – Files and Databases                                       Fall 2019 17

Division in SQL

❖ The hard way, without 
EXCEPT:

Sailors S such that ...
there is no boat B without ...
a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

SELECT  S.sname
FROM  Sailors S
WHERE  NOT EXISTS 
                (SELECT  B.bid
                 FROM  Boats B
                 EXCEPT
                 SELECT  R.bid
                 FROM  Reserves R
                 WHERE  R.sid=S.sid)

(1)

SELECT  S.sname
FROM  Sailors S
WHERE  NOT EXISTS  

(SELECT B.bid
        FROM   Boats B 
        WHERE NOT EXISTS  ( SELECT R.bid
                                           FROM   Reserves R
                                           WHERE R.bid=B.bid
                                                      AND R.sid=S.sid))

(2)
All 
boats

Boats 
reserved
by a given 
Sailor



Comp 521 – Files and Databases                                       Fall 2019 18

Next Time

❖ We’ve covered the portion of SQL that 
strictly returns "tuples from tables"

❖ Next time we will consider some important 
extensions, that summarize sets of tuples. 
They are useful and a natural additions to 
query specification.


