Hadoop, a distributed framework for Big Data

Move aside cows!
It’s time for the BIG guys

Slides and graphics borrow heavily from Prof. Nalini Venkatasubramanian

http://www.ics.uci.edu/~cs237/
BIG Data, how big is BIG?

• Not about size, but how data is managed
• Relational databases was all about organizing data into tables
• Sometimes it is just too time consuming, or the data is just too big, to organize it in order to do simple queries
• Much data is unstructured or semi-structured and we’d like to process it in parallel
• Data warehouses
1. Introduction: Hadoop’s history and advantages

2. Architecture in detail

3. Hadoop in industry
What is Hadoop?

- Open-source implementation of a Map-Reduce framework for reliable, scalable, distributed computing and data storage.
- It is a flexible architecture for large scale computation and data processing on a network of commodity hardware.
• Designed to answer the question: “How to process big data with reasonable cost and time?”
Search engines in 1990s

MetaCrawler Parallel Web Search Service
by Erik Selberg and Oren Etzioni

Try the new MetaCrawler Beta!
If you're searching for a person's home page, try Aboy!

- Examples - Beta Site - Add Site - About

Search for:
- as a Phrase
- All of these words
- Any of these words

Fast Search - Comprehensive Search

For better results, please specify:
Search Region: The World
Search Sites: Any

Performance parameters:
Max wait: 10 minutes
Match type: Loose

Excite Search: twice the power of the competition.

Excite Reviews: site reviews by the web's best editorial team.

Serious Sports Fans Only! $1,000,000 in Cash and Prizes!
For serious sports fans only! Play Fantasy Football!

Lycos
It's amazing where Go Get it will get you.

New Search - TopNews - Sites by Subject - Top 5% Sites - City Guide - Pictures & Sounds - PeopleFind - Point Review - Road Maps - Software - About Lycos - Chat Lycos - Help

Add Your Site to Lycos

Copyright © 1996 Lycos, Inc. All Rights Reserved.
Lycos is a trademark of Carnegie Mellon University.
Google search engines

2003 The Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

2004 MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat

2006 Bigtable: A Distributed Storage System for Structured Data
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

1998

2016
2005: Doug Cutting and Michael J. Cafarella developed Hadoop to support distribution for the Nutch search engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache Software Foundation.
What is Hadoop?

- **Hadoop**: An open-source software framework that supports data-intensive distributed applications, licensed under the Apache v2 license.

- **Goals / Requirements**: Data and Processing abstractions facilitate queries of large, dynamic, and rapidly growing data sets
 - Structured and non-structured data
 - Simple programming models

- High scalability and availability

- Use commodity (cheap!) hardware with little redundancy

- Fault-tolerance

- Move computation rather than data
Hadoop’s Architecture

• Distributed, with some *modest* centralization

• Main nodes of cluster are where most of the computational power and storage of the system lies

• Main nodes run TaskTracker to accept and reply to MapReduce tasks, and also DataNode to store needed blocks closely as possible

• Central control node runs NameNode to keep track of HDFS directories & files, and JobTracker to dispatch compute tasks to TaskTracker

• Written in Java, also supports Python and Ruby
Hadoop’s Data Model

1. Given giant files
2. Chops them up into good-sized chunks (64Mb)
3. Replicate and Distribute them

Each chunk is replicated 3 times, and placed on a different processing node

A name server (actually 2) keeps track of where the chunks are

Hadoop’s Distributed File System
Whenever we query the dataset, it's done in the following stages:

Map:
1. A processor is assigned to each chunk.
2. That processor scans, filters, and maps each data item into key-value pairs.
3. Keys are locally binned

Shuffle:
4. Bins with common keys are consolidated by broadcasting them to a common node

Reduce:
5. Final processing is done within each bin, often agglomerative-like operations
Hadoop’s Architecture

- **Hadoop Distributed FileSystem** (Chops up and distributes data)
- Tailored to needs of MapReduce
- Targeted towards many reads of file streams
- **Writes** are more costly
- High degree of data replication (3x by default)
- No need for RAID on normal nodes
- Large blocksize (64MB, bigger than database pages)
- Location awareness of DataNodes in network
Also need to keep track of:
1. Where the data chunks are
2. What the state of multiple MapReduce jobs are in
3. Redundancy in case there are either H/W or network issues
Hadoop’s Architecture

NameNode:

- Stores metadata for the files, like the directory structure of a typical FS.
- The server holding the NameNode instance is quite crucial, so we keep a replicate.
- Transaction log for file deletes/adds, etc. Does not use transactions for whole blocks or file-streams, only metadata.
- Handles creation of more replica blocks when necessary after a DataNode failure
Hadoop’s Architecture

DataNode:

- Stores the actual data in HDFS
- Can run on any underlying filesystem (ext3/4, NTFS, etc)
- NameNode decides and tracks which blocks it has
- NameNode replicates blocks 3x
- Don’t need to Homogenous
 - Different levels of performance
 - Different operating systems
Job-Tracker has a key role in the MapReduce Engine.
Hadoop’s Architecture

MapReduce Engine:

- JobTracker & TaskTracker

- JobTracker splits up data into smaller tasks (“Map”) and sends it to the TaskTracker process in each node

- TaskTracker reports back to the JobTracker node and reports on job progress, sends data (“Reduce”) or requests new jobs

- You can have multiple of these, but only one is responsible for a given query
Most interaction with Hadoop is mediated by job managers using high-level APIs

1. PIG, a scripting language, with FOREACH, GROUP, FILTER, and ORDER constructs
2. Hive, SQL syntax, declarative specification
Hadoop in the Wild

- Hadoop is in use at most organizations that handle big data:
 - Yahoo!
 - Facebook
 - Amazon
 - Netflix
 - Etc…

- Some examples of scale:
 - Yahoo!'s Search Webmap runs on 10,000 core Linux cluster and powers Yahoo! Web search
 - FB’s Hadoop cluster hosts 100+ PB of data (July, 2012) & growing at ½ PB/day (Nov, 2012)
Hadoop in the Wild

- System requirements
 - High write throughput
 - Cheap, elastic storage
 - Low latency
 - High consistency (within a single data center good enough)
 - Disk-efficient sequential and random read performance
Hadoop in the Wild

• Facebook’s solution

 o Hadoop + HBase as foundations

 o Improve & adapt HDFS and HBase to scale to FB’s workload and operational considerations

 ▪ Major concern was availability: NameNode is SPOF & failover times are at least 20 minutes

 ▪ Proprietary “AvatarNode”: eliminates SPOF, makes HDFS safe to deploy even with 24/7 uptime requirement

 ▪ Performance improvements for realtime workload: RPC timeout. Rather fail fast and try a different DataNode