
Comp 521 – Files and Databases Fall 2016 1

Crash Recovery

Chapter 18

No office hours on W 11/30.

Adding office hours
on Th 12/1 from 3pm-5pm.

Move PS#5 due date to 12/5?

Comp 521 – Files and Databases Fall 2016 2

Review: The ACID properties

 Atomicity: All actions of a transaction happen, or

none happen.

 Consistency: If each Xact is consistent, and the DB starts

consistent, it ends up consistent.

 Isolation: Execution of one Xact is isolated from that

of other Xacts.

 Durability: If a Xact commits, its effects persist.

 The Recovery Manager guarantees Atomicity & Durability.

Comp 521 – Files and Databases Fall 2016 3

SAVEPOINT BeforeStuff;
SELECT …
UPDATE …
SELECT …
INSERT …
if (unableToFinish):

ROLLBACK TO BeforeStuff;
SELECT …
INSERT …
COMMIT;

Motivation

 Atomicity:

 Transactions may abort (“Rollback”).

 Durability:

 What if DBMS Crashes?
(“Worse case”, a few unfinished Xacts are lost)

Desired state after system restarts?

– T1, T2 & T3 should
be durable.

– T4 & T5 should
be aborted
(no effect).

crash!
T1
T2
T3
T4
T5

Comp 521 – Files and Databases Fall 2016 4

Assumptions

 Concurrency control is in effect.

 In particular, locks are acquired on blocks before
reading or writing and are released after commit.

 Updates are happening “in place”.

 i.e. data is overwritten on (or deleted from) non-
volatile disk.

 “In place” implies, we are not using a temporary/in

memory database, but one that is persistent.

 Can you think of a simple scheme to

guarantee Atomicity & Durability?

Comp 521 – Files and Databases Fall 2016 5

Recalling the Buffer Pool

Which of the following types of pages might be
found in the buffer pool?
A) Pinned interior nodes of a B+-tree

B) Sorted pages from a recent
sort-merge-join

C) A bucket of <key, rid> pairs from
a hash index

D) A “dirty” updated page from a
relation that has yet to be flushed to disk

E) All of the above

Of these, which must be tracked in by the log?

Buffer Pool

disk page

free frame

Disk

Memory

Comp 521 – Files and Databases Fall 2016 6

Handling the Buffer Pool

 Force every write to disk? Stall DBMS
until completed

 Poor response time.

 But provides durability.

 Steal buffer-pool frames
from uncommitted Xacts?
(flush dirty frames, only
when a new frame is needed)

 If not, poor throughput
(multiple writes to same page).

 If so, how can we ensure atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Comp 521 – Files and Databases Fall 2016 7

More on Steal and Force

 STEAL (why enforcing Atomicity is hard)

 What if a page, P, dirtied by some unfinished Xact
is written to disk to free up a buffer slot, and the
Xact later aborts?

• Must remember the old value of P at steal time (to
UNDO the page write).

 NO FORCE (why enforcing Durability is hard)

 What if system crashes before a page dirtied by a
committed Xact is flushed to disk?

• Write as little as possible, in a convenient place, at
commit time, to support REDOing modifications.

Comp 521 – Files and Databases Fall 2016 8

Basic Idea: Logging

 Record sufficient information
to REDO and UNDO every change in a log.

 Write and Commit sequences saved to log (on a
separate disk or replicated on multiple disks).

 Minimal info (diff) written to log, so multiple
updates fit in a single log page.

 Log: An ordered list of REDO/UNDO actions

 Log record contains:

<XID, pageID, offset, length, old data, new data>

 and additional control info (which we’ll see soon).

Comp 521 – Files and Databases Fall 2016 9

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

1. Modification of a database object must first be
recorded in the log, and the log updated, before
any change to the object

2. Must write all log records of a Xact before it
commits.

 #1 guarantees Atomicity.

 #2 guarantees Durability.

 Exactly how is logging (and recovery!) done?

 We’ll study the ARIES algorithm.

Comp 521 – Files and Databases Fall 2016 10

WAL &
the Log

 Each log record has a unique
Log Sequence Number (LSN).

 LSNs are always increasing.

 Each data page contains a pageLSN.

 LSN of most recent page modification.

 System keeps track of flushedLSN.

 Max LSN flushed from the
page buffer so far.

 WAL: Before a page is written,

 pageLSN flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log pages
on disk

“Log tail”
in RAM

Comp 521 – Files and Databases Fall 2016 11

Log Records

Possible log record types:

 Update

 Commit

 Abort

 End (signifies end of
commit or abort)

 Compensation Log
Records (CLRs)

 for UNDO actions

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only

Comp 521 – Files and Databases Fall 2016 12

Other Log-Related State

Transaction Table:
 One entry per active Xact.

 Contains XID, status (running/commited/aborted),
and lastLSN due to Xact

Dirty Page Table:
 One entry per dirty page in buffer pool

 Contains recLSN -- the LSN of the log record which
first dirtied the page

Comp 521 – Files and Databases Fall 2016 13

Log and Table Entries

prevLSN XID type pageID length offset before after

T1000 update 500 1 1800 B Z

T2000 update 600 3 42 DEF GHI

T2000 update 500 2 1799 AZ MN

T1000 update 505 1 128 Q R

pageID recLSN

500

600

505

transID status lastLSN

T1000 running

T2000 running

Log’s “Tail”

Dirty Page Table

Transaction Table

Comp 521 – Files and Databases Fall 2016 14

Normal Execution of an Xact

 Series of reads & writes, terminated by commit
or abort.

 We will assume that write is atomic on disk.
• In practice, additional details to deal with non-atomic writes.

 Strict 2PL.

 STEAL, NO-FORCE buffer management, with
Write-Ahead Logging.

Comp 521 – Files and Databases Fall 2016 15

Checkpointing

 Periodically, the DBMS creates a checkpoint, to
minimize recovery time in the event of a system
crash. What is written to log and disk:

 begin_checkpoint record: Indicates when chkpt began.

 end_checkpoint record: Contains current Xact table and
dirty page table. This is a “fuzzy checkpoint”:

• Xacts continue to run; so these tables are accurate only as of the
time of the begin_checkpoint record.

• No attempt to force dirty pages to disk; effectiveness of
checkpoint limited by oldest unwritten change to a dirty page.
(So it’s a good idea to periodically flush dirty pages to disk!)

 Store LSN of chkpt record in a safe place (master record).

Comp 521 – Files and Databases Fall 2016 16

The Big Picture:
What’s Stored Where

DB

Data pages
each

with a

pageLSN

Xact Table
lastLSN

status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN

XID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

master record

Comp 521 – Files and Databases Fall 2016 17

Simple Transaction Abort

 For now, consider an explicit abort of a Xact.

 No crash involved.

 We want to “play back” the log in reverse
order, UNDOing updates.

 Get lastLSN of Xact from Xact table.

 Can follow chain of log records backward via the
prevLSN field.

 Before starting UNDO, write an Abort log record.
• For recovering from crash during UNDO!

Comp 521 – Files and Databases Fall 2016 18

Abort, cont.

 To perform UNDO, must have a lock on data!

 Before restoring old value of a page, write a
Compensation Log Record (CLR):

 Continue logging while you UNDO!!

 CLR has one extra field: undonextLSN
• Points to the next LSN to undo (prevLSN of log entry)

 CLRs are never Undone (but they might be Redone
when repeating history: guarantees Atomicity!)

 At end of UNDO, write an “end” log record.

Comp 521 – Files and Databases Fall 2016 19

Transaction Commit

 Write commit record to log.

 All log records up to Xact’s lastLSN are
flushed on a commit.

 Guarantees that flushedLSN  lastLSN.

 Note that log flushes are sequential, synchronous
writes to disk.

 Many log records per log page.

 Commit() returns.

 Write end record to log.

Comp 521 – Files and Databases Fall 2016 20

Crash Recovery: Big Picture

 Start from a checkpoint (found
via master record).

 ARIES 3 phases. Need to:

– Analysis: Figure out which Xacts
committed since last checkpoint,
and which did not finish.

– REDO all logged actions.

Repeats “writing” history to
recreate buffer pool

– UNDO effects of unfinished
“loser” Xacts.

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Comp 521 – Files and Databases Fall 2016 21

Recovery: The Analysis Phase

 Reconstruct state at checkpoint.

 via the end_checkpoint record.

 Scan log forward from checkpoint.

 Look for End records: Remove Xact from Xact
table because it safely completed.

 Other records: Add Xact to Xact table, set
lastLSN=LSN, change Xact status on commit.

 Update record: If P not in Dirty Page Table,

• Add P to D.P.T., set its recLSN=LSN.

Comp 521 – Files and Databases Fall 2016 22

Recovery: The REDO Phase
 We repeat History to reconstruct state at crash:

 Reapply all updates (even of aborted Xacts!), redo CLRs.

 Scan forward from log record of the smallest
recLSN in the dirty page table. For each CLR or
update log rec LSN, REDO the action unless:

 Affected page is not in the Dirty Page Table, or

 Affected page is in D.P.T., but has recLSN > LSN, or

 pageLSN (in DB) LSN.

 To REDO an action:

 Reapply logged changes (restore to before state).

 Set pageLSN to LSN. No additional logging!

Comp 521 – Files and Databases Fall 2016 23

Recovery: The UNDO Phase

ToUndo={ l | l a lastLSN of a “loser” Xact}

Repeat:

 Choose largest LSN among ToUndo.

 If this LSN is a CLR and undonextLSN==NULL

• Write an End record for this Xact.

 If this LSN is a CLR, and undonextLSN != NULL

• Add undonextLSN to ToUndo

 Else this LSN is an update. UNDO the update,
write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Comp 521 – Files and Databases Fall 2016 24

Example of Recovery

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

05

10

20

30

40

45

50

60

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

ToUndo

prevLSNs

RAM

Comp 521 – Files and Databases Fall 2016 25

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

Xact Table

lastLSN

status

Dirty Page Table

recLSN

flushedLSN

ToUndo

undonextLSN

RAM

Comp 521 – Files and Databases Fall 2016 26

Additional Crash Issues

 What happens if system crashes during
Analysis? During REDO?

 How to limit the amount of work in REDO?

 Flush dirty pages asynchronously in the
background.

 Watch out for “hot spots”!

 How to limit the amount of work in UNDO?

 Avoid long-running Xacts.

Comp 521 – Files and Databases Fall 2016 27

Summary of Logging/Recovery

 Recovery Manager guarantees Atomicity &
Durability.

 Uses WAL to allow STEAL/NO-FORCE w/o
sacrificing correctness.

 LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

 pageLSN allows comparison of data page and
log records.

Comp 521 – Files and Databases Fall 2016 28

Summary, Cont.

 Checkpointing: A quick way to limit the
amount of log to scan on recovery.

 Recovery works in 3 phases:

 Analysis: Forward from checkpoint.

 Redo: Forward from oldest recLSN.

 Undo: Backward from end to first LSN of oldest
Xact alive at crash.

 Upon Undo, write CLRs.

 Redo “repeats history”: Simplifies the logic!

