
Comp 521 – Files and Databases Fall 2016 1

Concurrency Control

Chapter 17

Comp 521 – Files and Databases Fall 2016 2

Conflict Serializable Schedules

 Recall conflicts (WR, RW, WW) were the cause of
sequential inconsistency

 Two schedules are conflict equivalent if:
 Involve the same actions over the same transactions

 Every pair of conflicting actions is ordered the same way

 A schedule is conflict serializable if it is conflict
equivalent to some serializable schedule

Comp 521 – Files and Databases Fall 2016 3

Example 1

 A non-serializable schedule that is also not
conflict serializable:

 The cycle in the graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B
Precedence graph

Comp 521 – Files and Databases Fall 2016 4

Example 2

 A serializable schedule that is not conflict serializable:

 Serializable because it is equiv to
T1, T2, T3, or T2, T1, T3

 Not conflict serializable, because the ordering:
R1(A),W2(A),W1(A),W3(A)

is not consistent with any ordering, but conflict equivalent

 Importance of this distinction is that it can be proven that
Strict 2PL permits only conflict serializable schedules

T1: R(A), W(A), C
T2: W(A), C
T3: W(A), C

T1

T2

T3

Comp 521 – Files and Databases Fall 2016 5

Review: Strict 2PL

 Strict Two-phase Locking (Strict 2PL) Protocol:
 Each Xact must obtain a S (shared) lock on object

before reading, and an X (exclusive) lock on object
before writing.

 All locks held by a transaction are released when the
transaction completes

 If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

 Strict 2PL allows only schedules whose
precedence graph is acyclic (a DAG)

Comp 521 – Files and Databases Fall 2016 6

Two-Phase Locking (2PL)

 Two-Phase Locking Protocol

 Each Xact must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing.

 A transaction can release its locks once it has performed its
desired operation (R or W). A transaction cannot request
additional locks once it releases any locks.

 If an Xact holds an X lock on an object, no other Xact can
get a lock (S or X) on that object.

 Note: locks can be released before Xact completes
(commit/abort), thus relaxing Strict 2PL. 2PL starts with a
“growing” phase, where locks are requested followed by a
“shrinking” phase, where locks are released

Comp 521 – Files and Databases Fall 2016 8

Lock Management

 Lock and unlock requests are handled by the
database’s lock manager

 Lock table entry (per table, record, or index):

 Number of transactions currently holding a lock

 Type of lock held (shared or exclusive)

 Pointer to queue of lock requests

 Locking and unlocking must be atomic

 Lock upgrades: transaction that holds a shared
lock can be upgraded to hold an exclusive lock

Comp 521 – Files and Databases Fall 2016 9

Deadlocks

Deadlock: Cycle of transactions waiting
for locks to be released by each other.

Relatively rare schedules lead to
deadlock

Two ways of dealing with deadlocks:

 Deadlock detection

 Deadlock prevention

Comp 521 – Files and Databases Fall 2016 10

Deadlock Detection

 Create a waits-for graph:

 Nodes are transactions

 Edge from Ti to Tj indicates Ti is waiting
for Tj to release a lock

 DBMS periodically checks for cycles in the waits-for graph

 ex: T1: A = f(B), T2: B = g(C) , T3: C = h(A), arriving T1,T3,T2

T1: S(B),R(B), X(A),…
T2: S(C),R(C),X(B),…
T3: S(A),R(A), X(C),…

T1

T2 T3

Comp 521 – Files and Databases Fall 2016 11

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)…
T2: X(B),W(B) X(C)…
T3: S(C), R(C)
T4: X(B)…

T1 T2

T4 T3

T1 T2

T4 T3

X(A)

Comp 521 – Files and Databases Fall 2016 12

Deadlock Prevention

 When there is high contention for locks, detection
and aborting can hurt performance

 Assign priorities (eg. based on a Xact’s duration
using timestamps). Assume Ti wants a lock that Tj
holds.

 Two policies are possible:
 Wait-Die: If Ti has higher priority, Ti waits for Tj; otherwise

abort Ti (wait only if higher priority)

 Wound-wait: If Ti has higher priority, abort Tj; otherwise Ti
waits (preempt lower priorities)

 When Ti re-starts, it retains its original timestamp,
thus moves up the priority list

Comp 521 – Files and Databases Fall 2016 17

Dynamic Databases

 With fine-grain locks, even Strict 2PL will not assure
serializability:
 T1 locks all pages that currently contain sailors records with

rating = 1, and finds oldest sailor (say, age = 71).

 Next, T2 inserts a new sailor; rating = 1, age = 96. (added to a
page that previously had no sailor with rating 1, such pages
are not locked)

 T2 also deletes oldest sailor with rating = 2 (and, say, age =
80), and commits. (these aren’t locked, and T2 commits)

 T1 now locks all pages containing sailor records with rating
= 2, and finds oldest (say, age = 63).

 No consistent DB state where T1 is “correct”!

 Locking pages based on a selection is called a
“predicate” lock

Comp 521 – Files and Databases Fall 2016 18

The Problem

 T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.

 Assumption only holds if no sailor records are
added while T1 is executing!

 Need some mechanism to enforce this
assumption. (Index locking and predicate
locking.)

 Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

Comp 521 – Files and Databases Fall 2016 19

Index Locking

 If there is a dense index on the rating field
using Alternative (2), T1 should lock the
index page containing the data entries with
rating = 1.

 If there are no records with rating = 1, T1 must
lock the index page where such a data entry would
be, if it existed!

 If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new
pages from being added, to ensure that no
new records with rating = 1 are added.

r = 1
Data

Index

Comp 521 – Files and Databases Fall 2016 20

Predicate Locking

 Grant lock on all records that satisfy some
logical predicate, e.g. age > 2*salary.

 Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.

 What is the predicate in the sailor example?

 In general, predicate locking has a lot of
overhead, and is seldom implemented.

Comp 521 – Files and Databases Fall 2016 30

Summary

 There are several lock-based concurrency
control schemes (Strict 2PL, 2PL). Conflicts
between transactions can be detected in the
dependency graph

 The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

 Naïve locking strategies may have the
phantom problem

Comp 521 – Files and Databases Fall 2016 31

Summary (Contd.)

 Index locking is common, and affects
performance significantly.
 Needed when accessing records via index.

 Needed for locking logical sets of records (index
locking/predicate locking).

 Tree-structured indexes:
 Straightforward use of 2PL very inefficient.

 In practice, better techniques now known; do
record-level, rather than page-level locking.

