
Comp 521 – Files and Databases Fall 2016 1

Database Design and Tuning

Chapter 20

Comp 521 – Files and Databases Fall 2016 2

Overview

 After ER design, schema refinement, and the
definition of views, we have the conceptual and
external schemas for our database.

 The next step is to choose indexes, make clustering
decisions, and to refine the conceptual and external
schemas (if necessary) to meet performance goals.

 We must begin by understanding the workload:

 The most important queries and how often they arise.

 The most important updates and how often they arise.

 The desired performance for these queries and updates.

Comp 521 – Files and Databases Fall 2016 3

Decisions to Make

 What indexes should we create?

 Which relations should have indexes? What field(s) should
be the search key? Should we build several indexes?

 For each index, what kind of an index should it be?

 Clustered? Hash? Tree?

 Should we make changes to the conceptual schema?

 Consider alternative normalized schemas? (Remember,
there are many choices in decomposing into BCNF, etc.)

 Should we “undo” some decomposition steps and settle for
a lower normal form? (Denormalization.)

 Horizontal partitioning, replication, views ...

Comp 521 – Files and Databases Fall 2016 4

Index Selection for Joins

 When considering a join condition:

 Indices on relations allow for Index Nested
Loops.

• Should be clustered if join column is not a primary key
in common queries and many tuples can be filtered
within an inner loop.

• Clustering less important if join is on key

 Clustered B+ tree on join column(s) good for
Sort-Merge. (saves a sort on one relation)

(We discussed indexes for single-table queries in Chapter 8.)

Comp 521 – Files and Databases Fall 2016 5

Example 1 – Optimize Query

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

DepartmentEmployee

dno=dno

dname=‘Toy’

ename,mgr

(On-the-fly)

(Block Nested Loop)

π

σ

As written:

Department Employee

dno=dno

dname=‘Toy’

ename,mgr
(On-the-fly)

dno, ename

(Index Nested Loop)

π

πσ

Optimized:

Comp 521 – Files and Databases Fall 2016 6

Example 1 – Create Index

 Index on D.dname supports ‘Toy’ selection.
 Given this, index on D.dno is not needed. Hash or Tree?

 An Index on E.dno allows us to get matching (inner) Emp
tuples for each selected (outer) Dept tuple.

 What if WHERE included: `` ... AND E.age=25’’ ?
 Could retrieve Emp tuples using index on E.age, then join with Dept

tuples satisfying dname selection. Comparable to strategy that used
E.dno index.

 So, if E.age index is already created, this query provides much less
motivation for adding an E.dno index.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Comp 521 – Files and Databases Fall 2016 7

Example 2 – More precise SQL

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal >= 10000 AND E.sal <= 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

Comp 521 – Files and Databases Fall 2016 8

Example 2 – Sometimes Unclear

 Emp relation should be the outer (left-side) loop
 Emp has more selection paths (sal, hobby)

 Likely |Emp| >> |Dept|, thus better suited for BNL

 Suggests that we build an index on D.dno. (Hash or Tree?)

 What index should we build on Emp?
 B+ tree on E.sal, OR an index on E.hobby could be used. Only one is needed, and

which is better depends upon the selectivity of the conditions.

 As a rule of thumb, equality selections more selective than range selections.

 As both examples indicate, our choice of indexes is guided by the
plan(s) that we expect an optimizer to consider for a query. Have to
understand optimizers!

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

Comp 521 – Files and Databases Fall 2016 9

Clustering and Joins

 Clustering is especially important when accessing tuples in
the inner loop of an INL.
 Should make index on E.dno clustered.

 Suppose that the WHERE clause is instead:
WHERE E.hobby=‘Stamps’ AND E.dno=D.dno

 If many employees collect stamps, Sort-Merge join may be worth
considering. A clustered index on D.dno would help.

 Summary: Clustering is useful whenever many tuples are to
be retrieved.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Comp 521 – Files and Databases Fall 2016 10

Tuning the Conceptual Schema
 The choice of conceptual schema should be guided by

the workload, in addition to redundancy issues:
 We may settle for a 3NF schema rather than BCNF.

 Workload may influence the choice we make in decomposing
a relation into 3NF or BCNF.

 We may further decompose a BCNF schema!

 We might denormalize (i.e., undo a decomposition step), or we
might add fields to a relation.

 We might consider horizontal decompositions.

 If such changes are made after a database is in use,
called schema evolution; might want to mask some of
these changes from applications by defining views.

Comp 521 – Files and Databases Fall 2016 11

Example Schemas

 We will concentrate on Contracts, denoted as
CSJDPQV. The following FDs are given to hold:

JP  C, SD  P, C is the primary key.

 What are the candidate keys for CSJDPQV?

 What normal form is this relation schema in?

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Name, Cost)
Projects (Jid, Mgr)

Comp 521 – Files and Databases Fall 2016 12

Settling for 3NF vs BCNF

 CSJDPQV can be decomposed into SDP and CSJDQV,
and both relations are in BCNF. (recall SD  P drives this
decomposition)
 Lossless decomposition, but not dependency-preserving.

 Adding JPC makes it dependency-preserving, at the cost of
redundancy.

Contracts (Cid, Sid, Jid, Did, Qty, Val)
DeptPartSupplier (Sid, Did, Pid)
ProjectPartContract (Jid, Pid, Cid)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)

Comp 521 – Files and Databases Fall 2016 13

Workload

 Suppose that this query is very important:
 Find the number of copies Q of parts P ordered

by a given project Jid.

 Requires a join on the decomposed schema, but can be
answered by a scan of the original relation CSJDPQV.

 Could lead us to settle for the unnormalized schema
CSJDPQV.

SELECT DPS.Pid, C.Qty
FROM Contract C, DeptPartSupplier DPS
WHERE C.Pid=DPS.Pid AND C.Sid=DPS.Sid

AND C.Jid=?

Comp 521 – Files and Databases Fall 2016 14

Denormalization

 Suppose that the following query is important:

 What fraction of a department’s budget is spent on a
given part contract of the department?

 To speed up this query, we might might be tempted
add a field budget B to Contracts.

 This introduces the FD: D  B wrt Contracts.

 Thus, Contracts is no longer in 3NF.

 We might choose to modify Contracts thusly if the
query is sufficiently important, and we cannot obtain
adequate performance otherwise (i.e., by adding
indexes or by choosing an alternative 3NF schema.)

Comp 521 – Files and Databases Fall 2016 15

Choice of Decompositions
 There are 2 ways to decompose CSJDPQV into BCNF:

 SDP and CSJDQV; lossless-join but not dep-preserving.

 SDP, CSJDQV and CJP; dep-preserving as well.

 The difference between these is really the cost of
enforcing the FD: JP  C.

 1st by structure, adding the relation CJP.

 2nd by integrity constraint:
CREATE ASSERTION CheckJPCDep
CHECK (NOT EXISTS (

SELECT *

FROM DeptPartSupplier P, Contract C
WHERE P.Sid=C.Sid AND P.Did=C.Did
GROUP BY C.Jid, P.Pid
HAVING COUNT (C.cid) > 1))

Comp 521 – Files and Databases Fall 2016 16

Choice of Decompositions (Contd.)
 The following ICs were given to hold:

JP  C, SD  P, C is the primary key

 Suppose that, in addition, we add the FD that a given supplier
must always charges the same price for a given part:

SPQ  V

 If we decide that we want to decompose CSJDPQV into BCNF,
we now have a third decompsotion choice:
 Begin by decomposing it into SPQV and CSJDPQ.

 Then, decompose CSJDPQ (not in 3NF) into SDP, CSJDQ.

 This gives us the lossless-join decomp: SPQV, SDP, CSJDQ.

 To preserve JP  C, we can add CJP, as before.

 Choice: { SPQV, SDP, CSJDQ } or { SDP, CSJDQV }?

Comp 521 – Files and Databases Fall 2016 17

Decomposition of a BCNF Relation

 Suppose that we choose { SDP, CSJDQV }. This is in
BCNF, and there is no reason to decompose further
(assuming that all known ICs are FDs).

 However, suppose that these queries are important:

 Find the contracts with supplier S.

 Find the contracts made by department D.

 Decomposing CSJDQV further into CS, CD and CJQV
could speed up these queries. (Why?)

 On the other hand, the following query is slower:

 Find the total value of all contracts held by supplier S.

Comp 521 – Files and Databases Fall 2016 18

Horizontal Decompositions

 Our definition of decomposition: Relation is replaced
by a collection of relations that are projections. Most
important case.

 Sometimes, might want to replace relation by a
collection of relations that are selections.

 Each new relation has the same schema as the original, but a
subset of the rows.

 Collectively, new relations contain all rows of the original.
Typically, the horizontal decompositions are disjoint.

Comp 521 – Files and Databases Fall 2016 19

Horizontal Decompositions (Contd.)

 Suppose that contracts with value > 10000 are subject to
different rules. This means that queries on Contracts
will often contain the condition val > 10000.

 One way to deal with this is to build a clustered B+ tree
index on the val field of Contracts.

 A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with the
same attributes (CSJDPQV).
 Performs like index on such queries, but no index overhead.

 Can build clustered indexes on other attributes, in addition!

Comp 521 – Files and Databases Fall 2016 20

Masking Conceptual Schema Changes

 The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

 However, queries with the condition val>10000 must
be asked wrt LargeContracts for efficient execution:
so users concerned with performance have to be
aware of the change.

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION

SELECT *
FROM SmallContracts

Comp 521 – Files and Databases Fall 2016 21

Tuning Queries and Views

 If a query runs slower than expected, check if an index
needs to be re-built, or if statistics are too old.

 Sometimes, the DBMS may not be executing the plan you
had in mind. Common areas of weakness:
 Selections involving null values.

 Selections involving arithmetic or string expressions.

 Selections involving OR conditions.

 Lack of evaluation features like index-only strategies or certain
join methods or poor size estimation.

 Check the plan that is being used! Then adjust the choice
of indexes or rewrite the query/view.

Comp 521 – Files and Databases Fall 2016 25

More Guidelines for Query Tuning

 Minimize the use of DISTINCT: don’t need it if
duplicates are acceptable, or if answer contains a key.

 Minimize the use of GROUP BY and HAVING:

SELECT MIN (E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=102

SELECT MIN (E.age)
FROM Employee E
WHERE E.dno=102

 Consider DBMS use of index when writing arithmetic
expressions: E.age=2*D.age will benefit from index on
E.age, but might not benefit from index on D.age!

Comp 521 – Files and Databases Fall 2016 26

Guidelines for Query Tuning (Contd.)

 Avoid using intermediate
relations:

SELECT * INTO Temp
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’

SELECT T.dno, AVG(T.sal)
FROM Temp T
GROUP BY T.dno

vs.

SELECT E.dno, AVG(E.sal)
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’
GROUP BY E.dno

and

 Does not materialize the intermediate reln Temp.

 If there is a B+ tree index on <dno, sal>, an index-only
plan can be used to avoid retrieving any Emp tuples!

 Secondary search keys of “grouping” indices are free!

Comp 521 – Files and Databases Fall 2016 27

Summary

 Database design consists of several tasks:
requirements analysis, conceptual design, schema
refinement, physical design, and tuning.

 In general, have to go back and forth between these
tasks to refine a database design, and decisions in one
task can influence the choices in another task.

 Understanding the nature of the workload for the
application, and the performance goals, is
essential to developing a good design.

 What are the important queries and updates? What
attributes/relations are involved?

Comp 521 – Files and Databases Fall 2016 28

Summary

 The conceptual schema should be refined by
considering performance criteria and workload:

 May have to choose among alternative decompositions
into BCNF (or 3NF) based upon the workload.

 May need to denormalize, or undo some decompositions.

 May want to decompose a BCNF relation even further!

 May choose a horizontal decomposition of a relation.

 Importance of dependency-preservation based upon the
dependency to be preserved, and the cost of the IC check.

• Can add a relation to ensure dep-preservation (for 3NF, not
BCNF!); or else, can check dependency using a join.

Comp 521 – Files and Databases Fall 2016 29

Summary (Contd.)

 Over time, indexes have to be fine-tuned (dropped,
created, re-built, ...) for performance.

 Should determine the plan used by the system, and
adjust the choice of indexes appropriately.

 System may still not find a good plan:

 Only left-deep plans considered!

 Null values, arithmetic conditions, string expressions, the
use of ORs, etc. can confuse an optimizer.

 So, may have to rewrite the query/view:

 Avoid nested queries, temporary relations, complex
conditions, and operations like DISTINCT and
GROUP BY.

