Tree-Structured WORFD ,?F COX\'{

Indexes

Chapter 10

Midterm stats:
Average: 79.4
Median: 80
. © Original Artist
Q1 ’ 87 Reproduc’uon rlghts obtamable from
QS.’ 71 ' fwrind CartoonStobkEom)

Comp 521 - Files and Databases Fall 2016 1

Range Searches

< “Find all students with gpa > 3.0”

- If data is in sorted file, do binary search to find first such
student, then scan to find others.

= Cost of binary search can be quite high (must read entire page
to access one record).

+ Simple idea: Create an "index’ file.

, k1 k2 kN Index File
/ . \
N\ \
v \ \
Page 1 Page 2 Page 3 Page N Data File

& Can do binary search on (smaller) index file!
Comp 521 - Files and Databases Fall 2016

o b ’
“ y \
(¥ /r *.‘n !y
r

ISAM - Indexed Sequential Access Method ©

index entry
|
+ Index file may be quite large. 9

. . . K, ie a search key of a tuple in
< Can be applied hierarchically! the relation. P, s the page id of

either the page containing it, or

another index page containing
search keys >= K and < K.
Non-leaf
Pages
Leaf | -
Pages D D ", A -7
: Overflow ------ > :l oo T

age
pag Primary pages

¥ Leaf pages contain data entries (i.e. actual records or <key, rid> pairs.

Comp 521 - Files and Databases Fall 2016 4

Comments on ISAM

\/
0‘0

File creation: Leaf pages are allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

Index entries: <search key value, page id>;
they “direct’ search for data entries,
which are in leaf pages.

Search: Start at root; use key comparisons
to go to leaf. Costlog N
F = # entries/index pg, N = # leaf pgs

Insert: Find leaf data entry belongs to,
put it there if space is available, else allocate an
overflow page, put it there, and link it in.

Data Pages

Index Pages

Overflow pages

Delete: Find and remove from leaf; if empty overflow page, de-

allocate.

@ Static tree structure: inserts/deletes affect only leaf pages.
Comp 521 - Files and Databases Fall 2016

| —

Example ISAM Tree

< Each node can hold 2 entries; no need for
“next-leat-page” pointers. (Why?)

Root ~—au
40
20 33 51 63
/.
/ V V \
10* 15* 20* 27* 33* | 37* 40* | 46* 51* 55* 63* 97*

Comp 521 - Files and Databases Fall 2016 6

.‘o Q

\

After Inserting 23%, 48%, 41%, 42* 755

“Static” Root ~=

Index L] 42
Pages / \

20| | 33 51| |63

/
Primary / v \ / v \
Leaf 10* | 15* 20% | 27+ 33+ | 37+ 40* | 46* 51 | 55* | | e3* | 97
Pages) : .

\ “Static Allocation, but dynamic contents”

¢ ¢ (414 * 9
Overflow - agt| 41% Dynamic
Pages |

42+

Comp 521 - Files and Databases Fall 2016 7

... Then Deleting 42%, 51%, 97*

Root ~~—au
40
20 | | 33 51 | | 63
/
/ y v \
10* | 15* 20% | 27+ 33* | 37* 40* ‘ 46* 55+ 63*
23* 48* | 41*

= Note that 51% appears in index, but not in leaf!

Comp 521 - Files and Databases Fall 2016 8

.000

. B+ Tree: Most Widely Used Index ¥~

+ Insert/delete at log N cost; keep tree balanced.
(F = fanout, N = # leaf pages)

% Minimum 50% occupancy. Each internal non-
root node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

% Supports equality and range-searches etficiently.

Index Entries
(Steering Nodes/Blocks)

Data Entries
(<search_key>, <rid>) or
Comp 521 - Files and Databases Fall 2016 relation tuple if clustered 9

|]

Example B+ Tree

% Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

< Search for 5*, 15*%, all data entries >= 24* ...

Root \

13 17 24 30

2% | 3% | 5% [7* 14*| 16* 19%| 20* | 22* 24* [27%| 29* 33*| 34*(38* | 39*

= Based on the search for 15%, we know it is not in the tree!
Comp 521 - Files and Databases Fall 2016 10

.000

\

B+ Trees in Practice

+ Typical order: 200 (8Kb page/40 bytes per
index entry).
= Typical fill-factor: 67%.
- average fanout = 133
<+ Typical capacities:
- Height 4: 133* = 312,900,700 records
- Height 3: 133° = 2,352,637 records

<+ Can often hold top levels in buffer pool:
- Level 1 = 1 page = 8 Kbytes
- Level2= 133 pages= 1 Mbyte
= Level 3 =17,689 pages = 133 Mbytes

Comp 521 - Files and Databases Fall 2016 11

Inserting into a B+ Tree

X PUt data entry onto L that all steering nodes,

besides the root, are
at least half full.

< Find correct leaf L. 9
}w Maintain the invariant

- If L has enough space, done!

- Else, must split L (into L and a new node L2)
* Allocate new node
* Redistribute entries evenly
* Copy up middle key.
* Insert index entry pointing to L2 into parent of L.

<« This happens recursively

- To split index node, redistribute entries evenly, but push up
middle key (first key in new block). (Contrast with leaf splits.)

+ Splits “grow” tree; root split increases height.

- Tree growth: gets wider or one level taller at top.

Comp 521 - Files and Databases Fall 2016 12

Inserting 8* into Example B+ Tred =+~

Insert a record with

+ Observe how
K2 RE a search key = 8

minimum
Occupancy I.S [z]+ 5] :|_T14'|1a'| | ﬂ?s'lzu' 22| Tpa'|zr'|zg-| m3'|34'|33-|39'|
guaranteed in
both leaf and c copied up
index pg splits. \

+ Note difference ——— T e Te
between copy-
up and push-up;
be sure you |

understand the \

reasons for this.

pushed up

5 13 241 30

4 Fov

Comp 521 - Files and Databases Fall 2016 13

Example B+ Tree After Inserting 8*
SN

5 13 24 30
y N 7 ~
2* | 3* 5% 7*| 8* 14*| 16* 1979 20% 22* 24*| 27* 29* 33*| 34* 38*| 39*

“* Notice that root was split, leading to increase in height.

% In this example, we can

. Root
avoid split by redistributing N
8 17 24 30
entries; however, this is
usually not done ey ~ b —
|| s 8" | 147 16" 197 20%| 22* 24* | 27| 29* 33*| 34+ | 38" |39

in practice.

Comp 521 - Files and Databases Fall 2016 14

.000

g%
" Deleting a Data Entry from a B+

<+ Start at root, find leaf L with entry, if it exists.

< Remove the entry.
= If L is at least half-full, done!
- If L has only d-1 entries,

* Try to re-distribute, borrowing keys from sibling
(adjacent node with same parent as L).

* If redistribution fails, merge L and sibling.

<+ If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

+ Merge could propagate to root, decreasing height.

Comp 521 - Files and Databases Fall 2016 15

\

| —

Example Tree After (Inserting 8%, %,
Then) Deleting 19* and 20% ...

Before; N

5 13 24 30
SN D o~ SN\
. \ (=] | [[s[7]e] Jafre] | |[1ef2of22] |[2e[or]ao] |[ssse]as]a"]
oot
17
5 13 j 27 30
4 N 2 N
2% | 3* 5| 7*| 8* 14*| 16* 221 24~ 27*| 29* 33*| 34*| 38*[39*

» Deleting 19* is easy.

» Deleting 20* is done with redistribution. Notice
how middle key, 27, is copied up, replacing 24.

Comp 521 - Files and Databases Fall 2016 16

... And Then Deleting 24*
\

30

< Must merge.

% Observe “toss” of / '
index entry (27), and & :
lpull down, Of index 22% | 27* | 29* 33* [34* | 38* | 39
entry from above (17).

RON
13 17 30

5
¥ /\A ¥ A ¥ A

2% | 3* S5* | 7* | 8* 14* | 16* 22%| 27*| 29* 33* | 34* | 38* [39*

Comp 521 - Files and Databases Fall 2016 17

‘.000
000,'

Prefix Key Compression

< Important to increase fan-out.
< Common with composite search keys

+ Key values in index entries only “direct traffic”; can
often compress them.

- E.g., If we have adjacent index entries with search key values
Dannon Yogurt, David Smith and Devarakonda Murthy, we can
abbreviate David Smith to Dav. (The other keys can be
compressed too ...)

* Is this correct? Not quite! What if there is a data entry Davey Jones?
(Can only compress David Smith to Davi)

* In general, while compressing, must leave each index entry greater
than every key value (in any subtree) to its left.

<+ Insert/delete must be suitably modified.

Comp 521 - Files and Databases Fall 2016 21

‘.000
090.'

Bulk Loading of a B+ Tree

+ If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

< Bulk Loading can be done much more efficiently.

<« Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Root™

Sorted pages of data entries; not yet in B+ tree

-

3* | 4% ||| 6% | 9* | [10*|11*| [12*13* |20*22*| |23*|31* |35*|36*| |38*41*| |44*

Comp 521 - Files and Databases Fall 2016 22

..00

'g oo,

Bulk Loading (Contd.)

L] R t
+ Index entries for leaf i |l !
pages always / I
. . Dat t
entered into right- 6 12 23| [35 Sy Pages
. | , | \ not yet in B+ tree

most index page just J / l / L
above leaf level. P A NI NS BN 2PN B

When thlS fIHS up 3*[4*| | 6% 9*| 1101114 |12913% |201227 |23% 317 |35%36*||38741% |444
J
it splits. (Split may Root T30
go up right-most W
path to the I'OOt.) | 10| 135, Data entry pages
» Much faster than / \ 1, \ notyetin o iree
repeated inserts, 6| 112] 123 138,

especially if one . J . ,\l N / ml M/ N\,

considers locking! 572 T o] (107117 [12]13] [200229 |23731] [350361 [381a1 [22*
Comp 521 - Files and Databases Fall 2016 23

.000

'g e,
" Summary of Bulk Loading

% Option 1: multiple inserts.

- Slow.

- Does not give sequential storage of leaves.
% Option 2: Bulk Loading

- Has advantages for concurrency control.

- Fewer [/Os during build.

= Leaves will be stored sequentially (and linked, of
course).

= Can control “fill factor” on pages.

Comp 521 - Files and Databases Fall 2016 24

.!00

\

Summary

% Tree-structured indexes are ideal for range-
searches, also good for equality searches.

<+ ISAM is a static structure.

= Only leaf pages modified; overflow pages needed.

= Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

% B+ tree is a dynamic structure.
- Inserts/deletes leave tree height-balanced; log N cost.
- High fanout (F) means depth rarely more than 3 or 4.
- Almost always better than maintaining a sorted file.

Comp 521 - Files and Databases Fall 2016 26

.‘o Q

\
Summary (Contd.)

- Typically, 67% occupancy on average.

= Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.

- If data entries are data records, splits can change rids!
+ Key compression increases fanout, reduces height.

<+ Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.

% Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

Comp 521 - Files and Databases Fall 2016 27

