
Comp 521 – Files and Databases Fall 2016 1

Tree-Structured
Indexes

Chapter 10

Midterm stats:
Average: 79.4
Median: 80
Q1: 87
Q3: 71

Comp 521 – Files and Databases Fall 2016 3

Range Searches

 “Find all students with gpa > 3.0”
 If data is in sorted file, do binary search to find first such

student, then scan to find others.

 Cost of binary search can be quite high (must read entire page
to access one record).

 Simple idea: Create an `index’ file.

 Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

Comp 521 – Files and Databases Fall 2016 4

ISAM – Indexed Sequential Access Method

 Index file may be quite large.

 Can be applied hierarchically!

 Leaf pages contain data entries (i.e. actual records or <key, rid> pairs.

P
0

K
1 P

1
K 2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Comp 521 – Files and Databases Fall 2016 5

Comments on ISAM

 File creation: Leaf pages are allocated
sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

 Index entries: <search key value, page id>;
they `direct’ search for data entries,
which are in leaf pages.

 Search: Start at root; use key comparisons
to go to leaf. Cost log F N
F = # entries/index pg, N = # leaf pgs

 Insert: Find leaf data entry belongs to,
put it there if space is available, else allocate an
overflow page, put it there, and link it in.

 Delete: Find and remove from leaf; if empty overflow page, de-
allocate.

 Static tree structure: inserts/deletes affect only leaf pages.

Data Pages

Index Pages

Overflow pages

Comp 521 – Files and Databases Fall 2016 6

Example ISAM Tree

 Each node can hold 2 entries; no need for
“next-leaf-page” pointers. (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Comp 521 – Files and Databases Fall 2016 7

“Static Allocation, but dynamic contents”

“Dynamic”

“Static”

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Comp 521 – Files and Databases Fall 2016 8

... Then Deleting 42*, 51*, 97*

 Note that 51* appears in index, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Comp 521 – Files and Databases Fall 2016 9

B+ Tree: Most Widely Used Index

 Insert/delete at log F N cost; keep tree balanced.
(F = fanout, N = # leaf pages)

 Minimum 50% occupancy. Each internal non-
root node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

 Supports equality and range-searches efficiently.

Index Entries

Data Entries

(<search_key>, <rid>) or

relation tuple if clustered

(Steering Nodes/Blocks)

Comp 521 – Files and Databases Fall 2016 10

Example B+ Tree

 Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

 Search for 5*, 15*, all data entries >= 24* ...

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Comp 521 – Files and Databases Fall 2016 11

B+ Trees in Practice

 Typical order: 200 (8Kb page/40 bytes per
index entry).

 Typical fill-factor: 67%.

 average fanout = 133

 Typical capacities:

 Height 4: 1334 = 312,900,700 records

 Height 3: 1333 = 2,352,637 records

 Can often hold top levels in buffer pool:

 Level 1 = 1 page = 8 Kbytes

 Level 2 = 133 pages = 1 Mbyte

 Level 3 = 17,689 pages = 133 Mbytes

Comp 521 – Files and Databases Fall 2016 12

Inserting into a B+ Tree

 Find correct leaf L.

 Put data entry onto L.
 If L has enough space, done!

 Else, must split L (into L and a new node L2)

• Allocate new node

• Redistribute entries evenly

• Copy up middle key.

• Insert index entry pointing to L2 into parent of L.

 This happens recursively
 To split index node, redistribute entries evenly, but push up

middle key (first key in new block). (Contrast with leaf splits.)

 Splits “grow” tree; root split increases height.
 Tree growth: gets wider or one level taller at top.

Comp 521 – Files and Databases Fall 2016 13

Inserting 8* into Example B+ Tree

 Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

 Note difference
between copy-
up and push-up;
be sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5
continues to appear in the leaf.)

is copied up and

appears once in the index.)

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

Insert a record with

a search key = 8

Comp 521 – Files and Databases Fall 2016 14

Example B+ Tree After Inserting 8*

 Notice that root was split, leading to increase in height.

 In this example, we can
avoid split by redistributing
entries; however, this is
usually not done
in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Comp 521 – Files and Databases Fall 2016 15

Deleting a Data Entry from a B+ Tree

 Start at root, find leaf L with entry, if it exists.

 Remove the entry.

 If L is at least half-full, done!

 If L has only d-1 entries,

• Try to re-distribute, borrowing keys from sibling
(adjacent node with same parent as L).

• If redistribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

 Merge could propagate to root, decreasing height.

Comp 521 – Files and Databases Fall 2016 16

Example Tree After (Inserting 8*,
Then) Deleting 19* and 20* ...

 Deleting 19* is easy.

 Deleting 20* is done with redistribution. Notice
how middle key, 27, is copied up, replacing 24.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Before:

Comp 521 – Files and Databases Fall 2016 17

... And Then Deleting 24*

 Must merge.

 Observe ‘toss’ of
index entry (27), and
‘pull down’ of index
entry from above (17).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

Comp 521 – Files and Databases Fall 2016 21

Prefix Key Compression

 Important to increase fan-out.

 Common with composite search keys

 Key values in index entries only “direct traffic”; can
often compress them.
 E.g., If we have adjacent index entries with search key values

Dannon Yogurt, David Smith and Devarakonda Murthy, we can
abbreviate David Smith to Dav. (The other keys can be
compressed too ...)

• Is this correct? Not quite! What if there is a data entry Davey Jones?
(Can only compress David Smith to Davi)

• In general, while compressing, must leave each index entry greater
than every key value (in any subtree) to its left.

 Insert/delete must be suitably modified.

Comp 521 – Files and Databases Fall 2016 22

Bulk Loading of a B+ Tree

 If we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

 Bulk Loading can be done much more efficiently.

 Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

Comp 521 – Files and Databases Fall 2016 23

Bulk Loading (Contd.)

 Index entries for leaf
pages always
entered into right-
most index page just
above leaf level.
When this fills up,
it splits. (Split may
go up right-most
path to the root.)

 Much faster than
repeated inserts,
especially if one
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages

Comp 521 – Files and Databases Fall 2016 24

Summary of Bulk Loading

 Option 1: multiple inserts.

 Slow.

 Does not give sequential storage of leaves.

 Option 2: Bulk Loading

 Has advantages for concurrency control.

 Fewer I/Os during build.

 Leaves will be stored sequentially (and linked, of
course).

 Can control “fill factor” on pages.

Comp 521 – Files and Databases Fall 2016 26

Summary

 Tree-structured indexes are ideal for range-
searches, also good for equality searches.

 ISAM is a static structure.

 Only leaf pages modified; overflow pages needed.

 Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

 B+ tree is a dynamic structure.

 Inserts/deletes leave tree height-balanced; log F N cost.

 High fanout (F) means depth rarely more than 3 or 4.

 Almost always better than maintaining a sorted file.

Comp 521 – Files and Databases Fall 2016 27

Summary (Contd.)

 Typically, 67% occupancy on average.

 Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.

 If data entries are data records, splits can change rids!

 Key compression increases fanout, reduces height.

 Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.

 Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

