
Comp 521 – Files and Databases Fall 2016 1

SQL: Basic Queries

Chapter 5.1-5.4

Comp 521 – Files and Databases Fall 2016 2

Structured Query Language (SQL)

 Introduced in 1974 by IBM

 “De facto” standard db query language

 Caveats

 Standard has evolved (major revisions in 1992 and
1999)

 Semantics and Syntax may vary slightly among
DBMS implementations

Comp 521 – Files and Databases Fall 2016 3

“Baby” Example Instances

 We will start with these
instances of the Sailors
and Reserves relations
in our examples.

 If the key for the
Reserves relation
contained only the
attributes sid and bid,
how would the
semantics differ?

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves:

Sailors:

Comp 521 – Files and Databases Fall 2016 4

Basic SQL Query

 target-list A list of attributes of relations in relation-list

 relation-list A list of relation names (possibly with a range-
variable after each name).

 qualification Comparisons (Attr op const or Attr1 op Attr2,
where op is one of <, >, =, <=, >=, <>) combined using AND,

OR and NOT.

 DISTINCT is an optional keyword indicating that the answer
should not contain duplicates. By default duplicates are not
eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

     , , , , ,

Comp 521 – Files and Databases Fall 2016 5

Conceptual Evaluation Strategy

 Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:

 Compute the cross-product of the relation-list.

 Select (s) tuples if they satisfy qualifications.

 Project (p) attributes that in the target-list.

 If DISTINCT is specified, eliminate duplicate rows.

 This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Comp 521 – Files and Databases Fall 2016 6

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

Comp 521 – Files and Databases Fall 2016 7

Table Aliases (Variables)

 Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

However, aliases
also provide a
convenient
shorthand for
referencing
tables

OR

Comp 521 – Files and Databases Fall 2016 8

Find sailors who’ve reserved at least one boat

 Would adding DISTINCT to this query make a
difference?

 What is the effect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Comp 521 – Files and Databases Fall 2016 9

Expressions and Strings

 Illustrates use of arithmetic expressions and string pattern
matching: Find triples (of ages of sailors and two fields defined by
expressions) for sailors whose names have ‘us’ as the second and
third letter of their name.

 AS renames fields (r) in result. (Some SQL implementations
allow the use of ‘newalias=expr‘ as well)

 LIKE is used for approximate string matching. “_” stands for
any one character and “%” stands for 0 or more arbitrary
characters.

SELECT S.age, S.age*12.0 AS ageMonths, 10-S.rating AS revRating
FROM Sailors S
WHERE S.sname LIKE ‘_us%’

Comp 521 – Files and Databases Fall 2016 10

A more extensive example

 “Infant” Sailors/Reserves/Boats instance

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Sailors: Reserves: Boats:

Comp 521 – Files and Databases Fall 2016 11

Find sid’s of sailors who’ve reserved a
red or a green boat

 Two approaches

 If we replace OR by AND in
the first version, what do we
get?

 UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are
themselves the result of
SQL queries).

 Also available: EXCEPT

(What do we get if we
replace UNION by
EXCEPT?)

SELECT DISTINCT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=“red” OR B.color=“green”)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=“red”
UNION

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=“green”

Comp 521 – Files and Databases Fall 2016 12

Find sid’s of sailors who’ve reserved a
red and a green boat

 Solution 1: Multiple instancing
of the same relation in the
relation-list using another
variable

 Solution 2: INTERSECT:
Can be used to compute the
intersection of any two
union-compatible sets of
tuples.

 Contrast symmetry of the
UNION and INTERSECT

queries with the first
version.

SELECT DISTINCT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=“red” AND B2.color=“green”)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=“red”
INTERSECT

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=“green”

Comp 521 – Files and Databases Fall 2016 13

Nested Queries

 A very powerful feature of SQL: a WHERE clause can
itself contain an SQL query! (Actually, so can FROM

and HAVING clauses.)

 To find sailors who’ve reserved #103, use IN.

 To understand semantics of nested queries, think of a
nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

SELECT S.sid, S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT DISTINCT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve never reserved boat #103:

Comp 521 – Files and Databases Fall 2016 14

Nested Queries with Correlation

 EXISTS is another set comparison operator, like IN.

 Illustrates why, in general, a subquery must be re-
evaluated for each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE S.sid=R.sid)

Find names of sailors who’ve reserved any boat:

Comp 521 – Files and Databases Fall 2016 15

More on Set-Comparison Operators

 We’ve already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

 Also available: op ANY, op ALL, op IN

 Find sailors whose rating is greater than that of some
sailor called Horatio:

     , , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Comp 521 – Files and Databases Fall 2016 16

Rewriting INTERSECT Queries Using IN

 Similarly, EXCEPT queries re-written using NOT IN.

 To find names (not sid’s) of Sailors who’ve reserved
both red and green boats, just replace S.sid by S.sname
in SELECT clause. (What about INTERSECT query?)

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=‘green’)

Comp 521 – Files and Databases Fall 2016 17

Division in SQL

 The hard way, without
EXCEPT:

Sailors S such that ...

there is no boat B without ...
a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

(SELECT B.bid
FROM Boats B
EXCEPT

SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid)

(1)

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

(SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

(2)
All

boats

Boats

reserved

by a given

Sailor

Comp 521 – Files and Databases Fall 2016 18

Next Time

 We’ve covered the portion of SQL that has
the same power as relation algebra

 Next time we will consider some important
extensions, that cannot be expressed in
relational algebra, but are nonetheless useful
tools for and a natural additions to query
specification

