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Almost Over

1

1) Last Problem Set is due Tonight
2) FInal Exam on Saturday at 8am

50 questions - Open book, open notes, open internet
~25 on pipelining, pipelining CPUs, caches, virtual memory

     ~25 on earlier course material
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Using Caches with Virtual Memory
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CACHE MMUCPU CACHE
MMUCPU

Physical  Cache
Tags match physical addresses

● Avoids stale cache data 
after context switch

● SLOW: MMU time on HIT

Virtual Cache
Tags match virtual addresses

● Problem: cache becomes 
invalid after context switch

● FAST: No MMU time on HIT

The Cache TAGs are virtual, 
they represent addresses 
before translation.

These TAGs are physical, they hold 
addresses after translation.

Physically addressed Caches are 
the trend, because they better 
support parallel processing

Dynamic
RAM

Disk

Dynamic
RAM

Disk
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Best of Both Worlds

3

CACHE

CPU Dynamic
RAM

MMU Disk

OBSERVATION: If cache line selection is based on unmapped  page 
offset bits, RAM access in a physical cache can overlap  page map 
access.  Tag from cache is compared with physical page number 
from MMU.

Want “small” cache index / small page size → go with more associativity

VPN PPN
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Virtual Machines & the OS Kernel
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Power of Contexts: Sharing a CPU

Virtual 
Memory 1

Virtual 
Memory 2

Physical 
Memory

1. TIMESHARING among several programs --
• Programs alternate running in time slices called “Quanta”
• Separate context for each program
• OS loads appropriate context into pagemap when switching among pgms

2. Separate context for OS “Kernel” (eg, interrupt handlers)...
• “Kernel” vs “User” contexts
• Switch to Kernel context on interrupt;
• Switch back on interrupt return.

Every application can be 
written as if it has access 
to all of memory, without 
considering where other 
applications reside.

More than Virtual Memory
   A VIRTUAL MACHINE

What is this 
OS KERNEL 
thingy?

page 
table

page 
table
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Building a Virtual Machine

PROCESS #0 PROCESS #1
virtual

memory
virtual

memory

physical
memory

P1
P0
P1

shared
?
P0
P1
?
?

P0

Context #1Context #0

Goal: give each program its own “VIRTUAL MACHINE”; 
programs don’t “know” about each other…

Abstraction: create a PROCESS, with its own
  • machine state: r0, …, r16, psr • program (w/ possibly shared code)
  • context (pagemap) • virtual I/O devices (console…)
  • stack
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Multiplexing the CPU

PROCESS 
1

PROCESS 
0

Operating
System

1

2 3 4 5

Vi
rt

ua
l 

tim
e

1. Running in process #0
2. Stop execution of process #0 

either because of explicit yield or 
some sort of timer interrupt; 
 trap to handler code, saving 
 current PC in $27 ($k1)

3. First: save process #0 state 
(regs, context) Then: load 
process #1 state (regs, context)

4. “Return” to process #1: just like a 
return from other trap handlers 
(ex. jr $27) but we’re returning 
from a different trap than 
happened in step 2!

5. Running in process #1

When this process is 
interrupted.
We RETURN to this process!

And, vice versa. 
Result: Both processes get executed,

and no one is the wiser
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Stack-Based Interrupt Handling

BASIC SEQUENCE:
• Program A is running when some EVENT happens.
• PROCESSOR STATE saved on stack (like a procedure CALL)

• The HANDLER program to be run is selected.
• HANDLER runs to completion
• State of interrupted program A is re-installed
      lrmfd sp!,{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,sp,lp,pc}

• Program A continues, unaware of interruption.

Saved 
State 
of A

old sp

sp

CHARACTERISTICS:
• TRANSPARENT  to interrupted program!
• Handler runs to completion before returning
• Obeys stack discipline: handler can "borrow" stack from 

interrupted program (and return it unchanged) or use a 
special handler stack.

srmfd sp!,{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,sp,lp,pc};  b handler

R13 will have the 
address of the 
“next” instruction 
before the 
interrupt

The 
interrupt 
forces 
these 2 
instructions 
to 
be 
executed 
(similar 
to 
reset)
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External (Asynchronous) 

Interrupts
Example:

System maintains current time of day (TOD) count at a well-known 
memory location that can be accessed by programs. 
This value must be updated periodically in response to 
A clock “interupt” triggered perhaps 100 times per second.

Program A (Application)
• Executes instructions of the user program.
• Doesn’t want to know about clock interrupts
• Checks TOD by examining the memory location.

Clock Handler
• GUTS: Sequence of instructions that increments TOD.  Written in C.
• Entry/Exit sequences save & restore interrupted state, call the C 
handler.  Written as assembler “stubs”.
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Interrupt Handler Coding

Clock_h: mov   r0,#User
         mov   r1,16
save:    ldr   r2,[sp,r1,lsl #2]
         str   r2,[r0,r1,lsl #2]
         subs  r1,r1,#1
         bne   save
         bl    Clock_Handler
         mov   r0,#User
         mov   r1,16
restore: ldr   r2,[r0,r1,lsl #2]
         str   r2,[sp,r1,lsl #2]
         subs  r1,r1,#1
         bne   restore
         mov   r0,#UMODE
         msr   r0,PSR
         lrmfd sp!,{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,sp,lp,pc}

“Interrupt stub” (written in assembly)

long TimeOfDay;
struct Mstate { int R1,R2,…,SP,LP,PC } User;

/* Executed 100 times/sec */
Clock_Handler() {
   TimeOfDay = TimeOfDay + 10; // in milliseconds
}

Handler (written in C)
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Time-Sharing the CPU

    We can make a small modification to our clock 
handler implement time sharing.

A Quantum is that smallest time-interval that we 
allocate to a process, typically this might be 50 to 
100 mS. (Actually, most OS Kernels vary this 
number based on the processes priority).  

long TimeOfDay;
struct Mstate { int R1,R2,…,SP,LP,PC } User;  

/* Executed 100 times/sec */
Clock_Handler(){
   TimeOfDay = TimeOfDay + 10;
   if (TimeOfDay % QUANTUM == 0) Scheduler();
}

Our clock handler 
calls another function
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Simple Timesharing Scheduler

long TimeOfDay;
struct Mstate { int R1,R2,…,SP,LP,PC } User;
.
.
.
struct PCB {

struct MState State; /* Processor state   */
Context PageMap; /* VM Map for proc   */
int DPYNum;     /* Console number    */

} ProcTbl[N];     /* one per process   */

int Cur = 0; /* “Active” process  */

Scheduler() {
   ProcTbl[Cur].State = User; /* Save Cur state */

Cur = (Cur+1) % N; /* Incr mod N     */
User = ProcTbl[Cur].State; /* Install for next User */

}

(PCB = Process Control Block)
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Avoiding Re-Entrance

Handlers which are interruptable are called RE-ENTRANT, and pose 
special problems... miniARM, like many systems, disallows reentrant 
interrupts!   Mechanism: Interrupts are disabled in “Kernel Mode”:

USER mode
(Application)

KERNEL 
mode

(Op Sys)

main()
{ ...
  ...
  ...
}     K = 0

K = 1

Kernel mode is another bit in 
the PSR

Clock_Handler()
{ ...
  ...
  ...
}

Scheduler()
{ ...
  ...
  ...
}
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Other Interrupt Sources

Asynchronous Inputs: 
Keyboard, mouse events, disk access, etc.

Ex: On a keystrike a special type of handler 
called a “device driver” saves the key-code at

    a known location (much like the TimeOfDay
    variable), and clears a “buffer empty” flag.

User code reads this value when 
needed from the known location. 

    But, if no key has been struck, 
    what then?
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Waiting is wasteful

The user code could sit in a loop waiting for the buffer-empty 
location to be cleared. This is called a “spin-lock”.

This procedure is possibly user code.

Wastes CPU cycles until quantum is over.

keycodeType ReadKey()
{

int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)) {

/* Nothing to do but wait */
}
return ReadInputBuffer(kbdnum);

}
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ReadKey Synchronous SYSCALL

keycodeType ReadKey_Handler()
{

int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

User.pc = User.pc - 4;
Scheduler( );

}
return ReadInputBuffer(kbdnum);

}

This procedure is performed as a kernel service...

BETTER: On I/O wait, YIELD remainder of time slot (quantum):

RESULT: Better CPU utilization!! Samples event every quantum.
FALLACY: Timesharing causes a CPUs to be less efficient
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Sophisticated Scheduling

To improve efficiency further, we can avoid scheduling processes 
in prolonged I/O wait:
• Processes can be in ACTIVE or WAITING (“sleeping”) states;
• Scheduler cycles among ACTIVE PROCESSES only;
• Active process moves to WAITING status when it tries to read 

a character and buffer is empty;
• Waiting processes each contain a code (eg, in PCB) designating 

what they are waiting for (eg, keyboard N);
• Device interrupts (eg, on keyboard N) move any processes 

waiting on that device to ACTIVE state.
UNIX kernel utilities:

• sleep(reason) - Puts CurProc to sleep.  “Reason” is an 
arbitrary binary value giving a condition for reactivation.

• wakeup(reason) - Makes active any process in sleep(reason).
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Technology

Architecture

411 was an introduction to 

Computer Science “Systems”

Applications
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Systems: 2018

Tablet computing, Client computing 
(Chrome, HTML 5), Cloud computing, 
E-commerce, Android, Arduino, IoT, 

Wireless, Streaming Media,  …

CMOS: 4.3 billion transistors/chip 
(2018 6-core/12 thread Kaby Lake)

10x transistors every 5 years
1% performance/week!

Von Neumann Architectures, Multi-Core
Procedures, Objects, Processes
(hidden: pipelining, superscalar, SIMD, …)
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Systems 2025?

Natural language/speech interfaces, 
Virtual Assistants, Computer vision, systems that 

“learn” rather than require programming, 
field-programmable microbes, direct brain 

interfaces, human augmentation  …

CMOS: 
 450 billion transistors

10 GHz clock

Von Neumann Architecture???
1024-way multicore?

Neural Nets?
How will we program them?

Computer 
Science is the 
fastest 
changing 
field in the 
history of 
mankind!

This is the 
hard part.

This stuff is 
relatively easy 
to predict.

To predict his 
stuff, follow 
the news and 
think creatively
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What next? Some options…

Comp 401
Foundations of 
Programming

Comp 410
Data 

Structures

Comp 411
Computer 

Organization

Comp 550
Algorithms & 

Analysis

Comp 411 was 
necessarily broad

… but not very deep

Comp 520
Compilers

Comp 530
Operating 
Systems

Comp 455
Models of 
Languages 

& Computation

Comp 541
Digital Logic

Comp 521
Files &

Databases
Undergrad Options

Should I take or 
avoid these?

Comp 555
Bio-Algorithms

Comp 744
VLSI System 

Design

Comp 633
Parallel & Distributed

Computing

Comp 740
Computer Arch
& Implementation

Comp 741
Elements of
H/W Systems

Graduate 
Options


