
12/05/2018 Comp 411 - Fall 2018

Almost Over

1

1) Last Problem Set is due Tonight
2) FInal Exam on Saturday at 8am

50 questions - Open book, open notes, open internet
~25 on pipelining, pipelining CPUs, caches, virtual memory

 ~25 on earlier course material

12/05/2018 Comp 411 - Fall 2018

Using Caches with Virtual Memory

2

CACHE MMUCPU CACHE
MMUCPU

Physical Cache
Tags match physical addresses

● Avoids stale cache data
after context switch

● SLOW: MMU time on HIT

Virtual Cache
Tags match virtual addresses

● Problem: cache becomes
invalid after context switch

● FAST: No MMU time on HIT

The Cache TAGs are virtual,
they represent addresses
before translation.

These TAGs are physical, they hold
addresses after translation.

Physically addressed Caches are
the trend, because they better
support parallel processing

Dynamic
RAM

Disk

Dynamic
RAM

Disk

12/05/2018 Comp 411 - Fall 2018

Best of Both Worlds

3

CACHE

CPU Dynamic
RAM

MMU Disk

OBSERVATION: If cache line selection is based on unmapped page
offset bits, RAM access in a physical cache can overlap page map
access. Tag from cache is compared with physical page number
from MMU.

Want “small” cache index / small page size → go with more associativity

VPN PPN

12/05/2018 Comp 411 - Fall 2018 4

Virtual Machines & the OS Kernel

12/05/2018 Comp 411 - Fall 2018

Power of Contexts: Sharing a CPU

Virtual
Memory 1

Virtual
Memory 2

Physical
Memory

1. TIMESHARING among several programs --
• Programs alternate running in time slices called “Quanta”
• Separate context for each program
• OS loads appropriate context into pagemap when switching among pgms

2. Separate context for OS “Kernel” (eg, interrupt handlers)...
• “Kernel” vs “User” contexts
• Switch to Kernel context on interrupt;
• Switch back on interrupt return.

Every application can be
written as if it has access
to all of memory, without
considering where other
applications reside.

More than Virtual Memory
 A VIRTUAL MACHINE

What is this
OS KERNEL
thingy?

page
table

page
table

12/05/2018 Comp 411 - Fall 2018

Building a Virtual Machine

PROCESS #0 PROCESS #1
virtual

memory
virtual

memory

physical
memory

P1
P0
P1

shared
?
P0
P1
?
?

P0

Context #1Context #0

Goal: give each program its own “VIRTUAL MACHINE”;
programs don’t “know” about each other…

Abstraction: create a PROCESS, with its own
 • machine state: r0, …, r16, psr • program (w/ possibly shared code)
 • context (pagemap) • virtual I/O devices (console…)
 • stack

12/05/2018 Comp 411 - Fall 2018

Multiplexing the CPU

PROCESS
1

PROCESS
0

Operating
System

1

2 3 4 5

Vi
rt

ua
l

tim
e

1. Running in process #0
2. Stop execution of process #0

either because of explicit yield or
some sort of timer interrupt;
 trap to handler code, saving
 current PC in $27 ($k1)

3. First: save process #0 state
(regs, context) Then: load
process #1 state (regs, context)

4. “Return” to process #1: just like a
return from other trap handlers
(ex. jr $27) but we’re returning
from a different trap than
happened in step 2!

5. Running in process #1

When this process is
interrupted.
We RETURN to this process!

And, vice versa.
Result: Both processes get executed,

and no one is the wiser

12/05/2018 Comp 411 - Fall 2018

Stack-Based Interrupt Handling

BASIC SEQUENCE:
• Program A is running when some EVENT happens.
• PROCESSOR STATE saved on stack (like a procedure CALL)

• The HANDLER program to be run is selected.
• HANDLER runs to completion
• State of interrupted program A is re-installed
 lrmfd sp!,{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,sp,lp,pc}

• Program A continues, unaware of interruption.

Saved
State
of A

old sp

sp

CHARACTERISTICS:
• TRANSPARENT to interrupted program!
• Handler runs to completion before returning
• Obeys stack discipline: handler can "borrow" stack from

interrupted program (and return it unchanged) or use a
special handler stack.

srmfd sp!,{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,sp,lp,pc}; b handler

R13 will have the
address of the
“next” instruction
before the
interrupt

The
interrupt
forces
these 2
instructions
to
be
executed
(similar
to
reset)

12/05/2018 Comp 411 - Fall 2018

External (Asynchronous)

Interrupts
Example:

System maintains current time of day (TOD) count at a well-known
memory location that can be accessed by programs.
This value must be updated periodically in response to
A clock “interupt” triggered perhaps 100 times per second.

Program A (Application)
• Executes instructions of the user program.
• Doesn’t want to know about clock interrupts
• Checks TOD by examining the memory location.

Clock Handler
• GUTS: Sequence of instructions that increments TOD. Written in C.
• Entry/Exit sequences save & restore interrupted state, call the C
handler. Written as assembler “stubs”.

12/05/2018 Comp 411 - Fall 2018

Interrupt Handler Coding

Clock_h: mov r0,#User
 mov r1,16
save: ldr r2,[sp,r1,lsl #2]
 str r2,[r0,r1,lsl #2]
 subs r1,r1,#1
 bne save
 bl Clock_Handler
 mov r0,#User
 mov r1,16
restore: ldr r2,[r0,r1,lsl #2]
 str r2,[sp,r1,lsl #2]
 subs r1,r1,#1
 bne restore
 mov r0,#UMODE
 msr r0,PSR
 lrmfd sp!,{r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,sp,lp,pc}

“Interrupt stub” (written in assembly)

long TimeOfDay;
struct Mstate { int R1,R2,…,SP,LP,PC } User;

/* Executed 100 times/sec */
Clock_Handler() {
 TimeOfDay = TimeOfDay + 10; // in milliseconds
}

Handler (written in C)

12/05/2018 Comp 411 - Fall 2018

Time-Sharing the CPU

 We can make a small modification to our clock
handler implement time sharing.

A Quantum is that smallest time-interval that we
allocate to a process, typically this might be 50 to
100 mS. (Actually, most OS Kernels vary this
number based on the processes priority).

long TimeOfDay;
struct Mstate { int R1,R2,…,SP,LP,PC } User;

/* Executed 100 times/sec */
Clock_Handler(){
 TimeOfDay = TimeOfDay + 10;
 if (TimeOfDay % QUANTUM == 0) Scheduler();
}

Our clock handler
calls another function

12/05/2018 Comp 411 - Fall 2018

Simple Timesharing Scheduler

long TimeOfDay;
struct Mstate { int R1,R2,…,SP,LP,PC } User;
.
.
.
struct PCB {

struct MState State; /* Processor state */
Context PageMap; /* VM Map for proc */
int DPYNum; /* Console number */

} ProcTbl[N]; /* one per process */

int Cur = 0; /* “Active” process */

Scheduler() {
 ProcTbl[Cur].State = User; /* Save Cur state */

Cur = (Cur+1) % N; /* Incr mod N */
User = ProcTbl[Cur].State; /* Install for next User */

}

(PCB = Process Control Block)

12/05/2018 Comp 411 - Fall 2018

Avoiding Re-Entrance

Handlers which are interruptable are called RE-ENTRANT, and pose
special problems... miniARM, like many systems, disallows reentrant
interrupts! Mechanism: Interrupts are disabled in “Kernel Mode”:

USER mode
(Application)

KERNEL
mode

(Op Sys)

main()
{ ...
 ...
 ...
} K = 0

K = 1

Kernel mode is another bit in
the PSR

Clock_Handler()
{ ...
 ...
 ...
}

Scheduler()
{ ...
 ...
 ...
}

12/05/2018 Comp 411 - Fall 2018

Other Interrupt Sources

Asynchronous Inputs:
Keyboard, mouse events, disk access, etc.

Ex: On a keystrike a special type of handler
called a “device driver” saves the key-code at

 a known location (much like the TimeOfDay
 variable), and clears a “buffer empty” flag.

User code reads this value when
needed from the known location.

 But, if no key has been struck,
 what then?

12/05/2018 Comp 411 - Fall 2018

Waiting is wasteful

The user code could sit in a loop waiting for the buffer-empty
location to be cleared. This is called a “spin-lock”.

This procedure is possibly user code.

Wastes CPU cycles until quantum is over.

keycodeType ReadKey()
{

int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)) {

/* Nothing to do but wait */
}
return ReadInputBuffer(kbdnum);

}

12/05/2018 Comp 411 - Fall 2018

ReadKey Synchronous SYSCALL

keycodeType ReadKey_Handler()
{

int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

User.pc = User.pc - 4;
Scheduler();

}
return ReadInputBuffer(kbdnum);

}

This procedure is performed as a kernel service...

BETTER: On I/O wait, YIELD remainder of time slot (quantum):

RESULT: Better CPU utilization!! Samples event every quantum.
FALLACY: Timesharing causes a CPUs to be less efficient

12/05/2018 Comp 411 - Fall 2018

Sophisticated Scheduling

To improve efficiency further, we can avoid scheduling processes
in prolonged I/O wait:
• Processes can be in ACTIVE or WAITING (“sleeping”) states;
• Scheduler cycles among ACTIVE PROCESSES only;
• Active process moves to WAITING status when it tries to read

a character and buffer is empty;
• Waiting processes each contain a code (eg, in PCB) designating

what they are waiting for (eg, keyboard N);
• Device interrupts (eg, on keyboard N) move any processes

waiting on that device to ACTIVE state.
UNIX kernel utilities:

• sleep(reason) - Puts CurProc to sleep. “Reason” is an
arbitrary binary value giving a condition for reactivation.

• wakeup(reason) - Makes active any process in sleep(reason).

12/05/2018 Comp 411 - Fall 2018

Technology

Architecture

411 was an introduction to

Computer Science “Systems”

Applications

12/05/2018 Comp 411 - Fall 2018

Systems: 2018

Tablet computing, Client computing
(Chrome, HTML 5), Cloud computing,
E-commerce, Android, Arduino, IoT,

Wireless, Streaming Media, …

CMOS: 4.3 billion transistors/chip
(2018 6-core/12 thread Kaby Lake)

10x transistors every 5 years
1% performance/week!

Von Neumann Architectures, Multi-Core
Procedures, Objects, Processes
(hidden: pipelining, superscalar, SIMD, …)

12/05/2018 Comp 411 - Fall 2018

Systems 2025?

Natural language/speech interfaces,
Virtual Assistants, Computer vision, systems that

“learn” rather than require programming,
field-programmable microbes, direct brain

interfaces, human augmentation …

CMOS:
 450 billion transistors

10 GHz clock

Von Neumann Architecture???
1024-way multicore?

Neural Nets?
How will we program them?

Computer
Science is the
fastest
changing
field in the
history of
mankind!

This is the
hard part.

This stuff is
relatively easy
to predict.

To predict his
stuff, follow
the news and
think creatively

12/05/2018 Comp 411 - Fall 2018

What next? Some options…

Comp 401
Foundations of
Programming

Comp 410
Data

Structures

Comp 411
Computer

Organization

Comp 550
Algorithms &

Analysis

Comp 411 was
necessarily broad

… but not very deep

Comp 520
Compilers

Comp 530
Operating
Systems

Comp 455
Models of
Languages

& Computation

Comp 541
Digital Logic

Comp 521
Files &

Databases
Undergrad Options

Should I take or
avoid these?

Comp 555
Bio-Algorithms

Comp 744
VLSI System

Design

Comp 633
Parallel & Distributed

Computing

Comp 740
Computer Arch
& Implementation

Comp 741
Elements of
H/W Systems

Graduate
Options

