MEMORY HIERARCHY + CACHING

I+ makes me look faster,

/

S$ill in your Halloween
costume?

1/30/2.018

don’t you +hink?

Comp 41 - Fall 2018

Memor'y Flavors
Principle of Locality
Memory Hierarchies
Caches

Associa+ivi+y
Write-thr
Write-back

ALL MEMORIES AREN'T CREATED EQUAL
&uan+i+y VS SPeed

Memory systems can be either:
- Bl and SLOW..
or
. SMALL and FAST.

$/GB
1000 | SRAM (500$/GB. 0.2 ls there an
o] (Rl ARCHITECTURAL solution
i 2

0| s DRAM (4$/GB, 5 ns) to this DILEMMA:

L *SSD (0.5$/GB, 300 nS)

_(',11 «HDD (0.02$/GB, 10 mS)

> Access Time

10 10° 103 1 100

I/30/2018 Comp 41 - Fall 2018

Tricks For TNCREASING THROVGHAVT |||
MuH-iPIexeal The First thing that

bit lines word lines

Address should pop into your
Col Col Cdl Cal mind when asked to
I 2 3 2N / speed up a aﬁgﬁa\ desigm
o EL oL L L L L Y PIPELINING
3
N h DRAM
{I[E3R {Er e e
§ —&I —&I —&I —&I —&I —&I 20nS reads and writes
/\éj T L LT L L L Row?' (45 per abyte)
—— \memo cell Double Data Rate

(ohe bit) 5ynchronous DRAM
(DDR)

: = =000

I/30/2.018 Comp 4l - Fall 2018 3

Column Mul-ﬁp!exer'/s%er

~
—

= S
~ 2

-

(s
(s
-

N
w

ANOTHER TRICK

Address[31:4]

Address[3:2]

Addr Addr Addr Addr
MEM, | | MEM MEM, | | MEM,
Data Data Data Data
Y Y Y Y /
0 1 2 3
Where did

18 only the lower order
addresses

needonlywaﬂﬂ-.eT

of the mux

1/30/2.018

E’; Address(l:0] go?

Comp 41 - Fall 2018

P —

should try when asked to

speed up a cﬁgﬁal desigm

|n+er'leavin3

Accessing 4 memories at
the same time has 4x the

+hrwghpu+. Also, every

4th word is in a
different memory.

A limitation of both
pipelining and interieaving
is their assumption that
addresses are sequentiol

Which is approximately
truel

TYPICAL MEMORY REFERENCE PA'msausi

i J

MEMORY TRACE -
A temporal sequence
e o 0o o ° of memo re-Ferences
e .o ® © o o000 o. (acldresse -Pr'oma
stack e 0 0 0 o real Pr'ogr'am

address

T TWO KEY OBSERVATIONS:

coee o °*°*° °e e® % oo TEMPORAL LOCALITY -
data o0e o oo o i+ an item is referenced,
eee ® it will tend to be
o & referenced again soon
.. .. .
L o‘ SPATIAL LOCALITY -
e & W an item is referenced

o o % nearby items wil tend
ro ra m o o .. ()
prog to be referenced soon

I/30/2.018 Comp 4l - Fall 2018 5

EXPLOITING THE MEMORY HIERARCHY
Approach | (Cr'ay, others): Expose Hierarchy

. Kegic;‘l'er'e, Main Memory,

Disk each availdble as
9+orage aternatives;

+ Tell programmers: ‘Use them wisely'

Approach 2: Hide Hierarchy

SRAM

cPU

MAIN

==

- Programming model: SINGLE kind of memory, single

ress Gpace.

- Machine AUTOMATICALLY assigns locations to Fast or

slow memor-y, depending on
usage PaH-er'ns.

/

—
e -

‘MAIN MEMORY"
I/30/2018 Comp 41 - Fall 2018

HARD
Disk

THE CACHE CONCEFPT:

PROGRAM-TRANSPARENT MEMORY HIERARCHY

CPU 1.0 . _L (1.0-a) JDYNAMIC
100 E —l KAM
404 |42

Cache contains TEMPORARY COPES of
selected main-memory locations.. eg MemlIOO] = 37

)) Improve Hhe average access time Challet 'fle"
_ _ Maoke the
a HT RATIO: Fraction of refs found in CACHE. it ratio. «
(1-a) Miss RATIO: Kemaining references. as Hﬁh ’ag,
ossible.
t _=at & (l—(x)(Jrc ++) =1 + (l—a)er N P /

- . Why, iss, do I
2) Transparency (compa+|la|||+y, programming ease) .7 ncr :ﬁeaa'c:::s poenaHy
} for both main memory

and cache?

I/30/2-018 Comp 41 - Fall 208

How Hich 6F A HIT RATIO?

Suppose we can easily build an on-chip static memory with a 800 ps
access time, but the Fastest dynamic memories that we can buy for
main memory have an average access time of 10 ns. How high of a hit
rate do we need to sustain an average access time of | ns?

Solve for o +ave = +C + (l—(ﬂ’rm

o=1-G -+t =1-(-08)0 = 98%

Wow, caches redlly need o be good And they arel _’"’

I/30/2-018 Comp 41 - Fall 208

BAsiCc CACHE ALGORITUM

Tag

CPU

Data

A | Mem[A]

B | Mem[B]

Cache
‘Lines'

Cache-lines mi3h+ contain mul-l-iple
sequential words from memory,
thus amorrtizing the number of

(I-a)

MAIN
MEMORY

tag bits per data bits.
“ ll/?O/PZOIB

ON REFERENCE TO MemlX]: Look. fFor X among

cache +aas... “¥* here is a

’/ memory address.

HIT: X == TAG() , For some cache line i
READ: return DATA() f
WRITE: change DATA()

Start Write to Mem(X)

MISS: X hot found in any TAG of the cache

REPLACEMENT SELECTION:
Select some LINE k to hold Meml[X] (Allocation)

READ: Read Mem[X]
set TAG(k)=X, DATA(K)=Mem[Xx]

WRITE: Start Write to Mem(X)
set TAG(k)=X, DATAK)= hew Mem[X]

Comp 41 - Fall 2018

SEARCHING FOR TAGS

Associativity: Degree ofF paralelism used to lookup tags

Fully—Associaﬁve Cache: [T1AG| Data
Incoming
/ N
Address é? 7 ¢
The extreme in TAG| Data
associaﬁvely: / I~
/
Al TAGS are searched =7 T
in Par'allel
Data items from *anyt
address can be located in TAG| Data
any cache line /N
/ (= ? / l/]/
/

1/30/2.018

Comp 41 - Fall 208

HIT

Data
Out

THE OTHER EXTREME

Direc+—mapped: IF it is ih cache it is in exactly one place

Non-associative or "one-way" associative. No parallelism.
Uses only one comparator and ordir\ary RAM For togs:

Addr

Cache Address >
TAG

memory

Data

Addr

Data

Memory

Data

Memory Address

1/30/2.018

Data

Ht L— out

Comp 41 - Fall 208

L ow-cost leader

Direct-mapped caches
require a means for
translating "Memory
Addresses' to ‘Cache
Addresses'’. A simple
hash fFunction

DIRECT-MAPPED EXAMPLE

With 8-byte lines, 3 low-order bits determine the byte within the line.
With 4 cache lines, the next 2 bits can be used to decide which line

to use Memory
1024, ,=10000000000, — line = 00, =0, 1000 | 17
1000,,=01111101000, — line=01,=1, 1004 | 23
1040,, = 10000010000, — line =10, =2, 1008 | 11
1012 | 5
Cache 1016 | 29
Lineo | 1024 44 99 1020 | 38
Line1 | 1000 17 23 1024 | 44
Line2 | 1040 1 4 1028 | 99
Line3 | 1016 29 38 1032 | 97
1036 | 25
Tag Data 1040]
1/30/2.018 Comp 4l - Fadll 208 1044 4

DIRECT-MAPPED MISS

What happens when we now ask For address 10082

1008,,= 01111110000, — line =10, = 2.,

but earlier we put 1040 there..
1040,, = 10000010000, — line = 10, = 2.,

Line O
Line 1
Line 2
Line 3

1/30/2.018

Cache
1024 44 99
1000 17 23
1008 11 5
1016 29 38
Tag Data

Comp 41 - Fall 208

1000
1004
1008
1012
1016
1020
1024
1028
1032
1036
1040
1044

Memory
17

23
11

29
38
44
99
97
25

FULLY-ASSOC. Vs. DIRECT-MAPPED

Fully—associaﬁve N-line cache:

e N ;:? comparators, r'eais+er'9
used For tag/data storage (¥¥%)

e Location A can be stored in ANY
of the N cache lines; ho
‘collisions’

¢ Needs a replacement strategy to
pick- which line to use when
loading new word(s) into cache

~9” 4 COLLISIONs occur when there are

Q) muliple Hems that we'd like to keep
cached, we have room, bu} our
management policies only keeps a subset

of them.

1/30/2.018

Direc+—mapped N-line cache:

® One tag comparator, SRAM used
for tag/data storage (¥)

e Location A is stored in a
SPECIFIC line of the cache
determined by its address;
address ‘colisions’ possivle

® Replacement 9+r'a+egy hot
heeded: each word can only be
cached in one specific cache line

A

Is there something 4
in~bejween?

Comp 41 - Fall 2018

N-UJaYy SET-ASSOCIATIVE CACHE f:

INCOMING ADDRESS

TARGET

INDEX

‘N direct-mapped caches’, each with 2t entries of N lines

~— - | N
There are '§|
N P099i|9|e k t o
places that Q
a 3|ven - - :
Q
be stored ‘—'E
in the g
cache * * Y 3
S
QO
v
2
[())
MEM DATA E
DATA TO CPU ~—— _ é‘
s

HT ?ﬂ

1/30/2.018

Comp 41 - Fall 2018

ASSOCIATIVITY VS. MISS RATE

14
12

10

Miss
rate
(%) &

1/30/2.018

\ Associativity
—1-way
N —=2-way
4-way
X
\ \\ 8-way
—~fully assoc.

AN

RS\

e

1k

2k

16k 3%k R4k 128k

AkCachRek size (bytes)

8-way i (dmost) as effective as -Fully—associaﬁve

Comp 41 - Fall 2018

HANDLING WRITES

Observation: Most (80+%) of memory accesses are READs, but
writes are essential. How should we handle writes?

Policies:

e WRITE-THROUGH: CPU writes are cached but also written o main

memor-y (9+allina the CPU until write is compleJreaD. Memor'y always
holds “the truth’.

e WRITE-BACK: CPU writes are cached, but not immedia+ely written
to main memory. Memor‘y contents can become ‘stale".

Additional Enhancements:

e WRITE-BUFFERS: For either wri+e-+|nrough or write-back, writes
to main memory are bulfered CPU keeps executing while writes
are comPIeJreol (in order) in the bac\éarour\d.

What combination has the highest PerPormance?

I/30/2.018 Comp 41l - Fall 2018 7

WRITE-THROVGH

ON REFERENCE TO Mem[X]: Look. For X among tags..

HT: X == TAG() , For some cache line i
READ: return DATAL]
WRITE: change DATALI]; Start Write to Mem[X]

MISs: X hot found in TAG of any cache line
REPLACEMENT sSELECTION:
Select some line k to hold Mem[X]
READ: Read Mem[X]
set TAGLkK] = X DATALK] = Mem[X]
WRITE: Start Write to Mem[X]
set TAGLk] = X, DATALK] = new Mem[X]

1/30/2.018

Comp 41 - Fall 208

WeriTeE-BACK

ON REFERENCE TO Mem[X]: Look. For X among tags..

HT: X = TAG() , For some cache line |
READ: return DATA()
WRITE: change DATA(I), Stort-wWieite—to-Membxd

MISs: X hot found in TAG of any cache line

REPLACEMENT sSELECTION:

Select some line k to hold Mem[X]

Write Back: Write Data(k) to Mem[Taa[k]]
READ: Read Mem[X]

set TAGLK] = X DATALK] = Mem[X]
WRITE: Start-Wiite—+o-Memb3
set TAGLk] = X, DATALk] = hew Mem[X]

1/30/2.018

Comp 41 - Fall 2018

WRITE-BACk W/ 'DIRTY” BITS

DV TA DAT
8 G A
Dirty and Valid 11 A Meml[A] MAIN
bis are per line
of por oef ‘—’ 8 ~—| MEMORY
0]1 B Mem[B]
0

What if the cache
has a block-size
larger than one?

A) If only one word in
the line is modified we
end up writing back

ON REFERENCE TO Mem[X]: Look. for X among tags..
HT: X = TAG() , for some cache line |

READ: return DATA)

WRITE: change DATA(D); Start-Wieite—to-Membxd, DLI-=
MISS: X not fFourd in TAG of any cache line

REPLACEMENT SELECTION:

Select some line k to hold Mem[X] B) On a MISS, we need
If DLk == | the Write Data(k) to Mem[Taqu]] fo READ the line
READ: Read Meml[x]; set TAGIK] = X, DATALk] = MemBRIREEIWRLIE .

WRITE: Start-Write—+to-Memba, DLk]-=I
set TAGLk] = X, DATALK] = ne,leg\aeJr)g\)égn[«]

ALL words
po)

2

I/30/2018 Comp 41 - Fall 2018

20

P\
CACHE DESIGN SUMMARY 11

¢

Various design decisions the affect cache Per?ormance

e Block size, exploits spatial locdlity, saves tag H/W, but, it blocks
are too large you can load unneeded items at the expense ol
needed ones

e Write policies

e Write-through - Keeps memory ond cache consistent, but high
memory tra Fic

e Write-back - dlows memory to become STALE, but reduces
memory traf-Fic

No simple answers, in the real-world cache desiﬂns are based on
simulations uc;ir\a memor-y traces.

1/30/2.018 Comp 4l - Fall 2018 2]

