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Memory Hierarchy & Caching
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Still in your Halloween 
costume?

It makes me look faster,
don’t you think?

● Memory Flavors
● Principle of Locality
● Memory Hierarchies
● Caches
● Associativity
● Write-through
● Write-back 
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All Memories aren’t created equal
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Quantity vs Speed…

Memory systems can be either:
• BIG and SLOW... 
           or
• SMALL and FAST.
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Is there an 
ARCHITECTURAL solution 
to this DILEMMA?
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SSD (0.5$/GB, 300 nS)
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Tricks for Increasing Throughput
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The first thing that 
should pop into your 
mind when asked to 
speed up a digital design…

PIPELINING
Synchronous DRAM

(SDRAM)
20nS reads and writes

($5 per Gbyte)

Clock

Data
out

Double Data Rate
Synchronous DRAM

(DDR)
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Another Trick
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The second thing that 
should try when asked to 
speed up a digital design…

InterleavingAddr

MEM0

Data

Addr

MEM1

Data

Addr

MEM2

Data

Addr

MEM3

Data

Address[31:4]

Address[3:2]

Where did 
Address[1:0] go?

0                                1                                 2                                3                  

If only the lower order 
addresses change, we 
need only wait the Tpd 
of the mux.

A limitation of both 
pipelining and interleaving 
is their assumption that 
addresses are sequential!

Which is approximately 
true! 

Accessing 4 memories at 
the same time has 4x the 
throughput. Also, every 
4th word is in a 
different memory.
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Typical Memory Reference Patterns
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time

address

data

stack

program

MEMORY TRACE –
  A temporal sequence
  of memory references 
  (addresses) from a
  real program. 

TEMPORAL LOCALITY –
    If an item is referenced,
    it will tend to be 
    referenced again soon

SPATIAL LOCALITY –
    If an item is referenced,
    nearby items will tend
    to be referenced soon.

TWO KEY OBSERVATIONS:
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Exploiting the Memory Hierarchy
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Approach 1 (Cray, others): Expose Hierarchy
 • Registers, Main Memory, 
   Disk each available as

   storage alternatives;

• Tell programmers: “Use them wisely”

Approach 2: Hide Hierarchy
• Programming model: SINGLE kind of memory, single 

address space.
• Machine AUTOMATICALLY assigns locations to fast or 

slow memory, depending on 
usage patterns.

CPU

SRAM
MAIN
MEM

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”
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The Cache concept:
Program-Transparent Memory Hierarchy

7

Cache contains TEMPORARY COPIES of
selected main-memory locations...  eg. Mem[100] =  37

GOALS:  
1) Improve the average access time

 2) Transparency (compatibility, programming ease)

1.0 (1.0-α)
CPU

"CACHE"

DYNAMIC
RAM

"MAIN MEMORY”
100     37

α
(1-α)

HIT RATIO:  Fraction of refs found in CACHE.
MISS RATIO:  Remaining references.

Challenge:
Make the
hit ratio, 𝛂, 
as high as
possible.

Why, on a miss, do I 
incur the access penalty 
for both main memory 
and cache?

404     42

tave = 𝛂 tc + (1-𝛂)(tc + tm) = tc + (1-𝛂)tm
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How High of a Hit Ratio?

Suppose we can easily build an on-chip static memory with a 800 pS 
access time, but the fastest dynamic memories that we can buy for 
main memory have an average access time of 10 nS. How high of a hit 
rate do we need to sustain an average access time of 1 nS?
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Solve for 𝛂:  tave = tc + (1-𝛂)tm
𝛂 = 1 - (tave- tc)/tm = 1 - (1-0.8)/10 = 98%

Wow, caches really need to be good! And they are!
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Basic Cache Algorithm
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ON REFERENCE TO Mem[X]: Look for X among 
cache tags...

HIT: X == TAG(i) , for some cache line i
READ: return DATA(i)
WRITE: change DATA(i); 

Start Write to Mem(X)

MISS: X not found in any TAG of the cache

REPLACEMENT SELECTION:
Select some LINE k to hold Mem[X] (Allocation)

READ: Read Mem[X]
Set TAG(k)=X, DATA(K)=Mem[X]

WRITE: Start Write to Mem(X)
Set TAG(k)=X, DATA(K)= new Mem[X]

MAIN 
MEMORY

CPU

(1−α)

Tag Data

A

B

Mem[A]

Mem[B]

“X” here is a 
memory address.

Cache 
“Lines”

Cache-lines might contain multiple 
sequential words from memory, 
thus amortizing the number of 
tag bits per data bits.
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Searching for Tags

Associativity:  Degree of parallelism used to lookup tags

Fully-Associative Cache:
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TAG    Data    

= ?

TAG    Data    

= ?

TAG    Data    

Incoming
Address

HIT

Data
 Out

The extreme in 
associatively:
   All TAGS are searched
   in parallel

Data items from *any* 
address can be located in 
*any* cache line

= ?
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The other extreme

Direct-mapped: If it is in cache it is in exactly one place

Non-associative or “one-way” associative. No parallelism. 
Uses only one comparator and ordinary RAM for tags:
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TAG
memory

 Data
Memory    

A
dd

r

A
dd

r

Data Data

= ?

Cache Address

Memory Address Hit Data
Out

Low-cost leader:

Direct-mapped caches 
require a means for 
translating “Memory 
Addresses” to “Cache 
Addresses”. A simple 
hash function.  
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Direct-Mapped Example
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1024 44 99
1000 17 23
1040 1 4
1016 29 38
Tag Data

1000 17
1004 23
1008 11
1012 5
1016 29
1020 38
1024 44
1028 99
1032 97
1036 25
1040 1
1044 4

Memory

With 8-byte lines, 3 low-order bits determine the byte within the line.

With 4 cache lines, the next 2 bits can be used to decide which line 
to use

102410 = 100000000002 → line = 002 = 010

100010 = 011111010002 → line = 012 = 110

104010 = 100000100002 → line = 102 = 210

Line 0

Line 1

Line 2

Line 3

Cache



11/30/2018 Comp 411 - Fall 2018 

Direct-Mapped Miss
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What happens when we now ask for address 1008?
100810 = 011111100002 → line = 102 = 210

but earlier we put 1040 there...
104010 = 100000100002 → line = 102 = 210

1024 44 99
1000 17 23
1040 1 4
1016 29 38
Tag Data

1008 11 5

Line 0

Line 1

Line 2

Line 3

Cache

1000 17
1004 23
1008 11
1012 5
1016 29
1020 38
1024 44
1028 99
1032 97
1036 25
1040 1
1044 4

Memory
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Fully-Assoc. vs. Direct-mapped
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Fully-associative N-line cache:

● N tag comparators, registers 
used for tag/data storage ($$$)

● Location A can be stored in ANY 
of the N cache lines; no 
“collisions”

● Needs a replacement strategy to 
pick which line to use when 
loading new word(s) into cache  

Direct-mapped N-line cache:

● One tag comparator, SRAM used 
for tag/data storage ($)

● Location A is stored in a 
SPECIFIC line of the cache 
determined by its address; 
address “collisions” possible

● Replacement strategy not 
needed: each word can only be 
cached in one specific cache line

COLLISIONs occur when there are 
multiple items that we’d like to keep 
cached, we have room, but our 
management policies only keeps a subset 
of them.

Is there something 
in-between?
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N-Way Set-Associative Cache
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Associativity vs. Miss Rate
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Miss 
rate
(%)

Cache size (bytes)

Associativity

8-way is (almost) as effective as fully-associative
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Handling WRITES

Observation: Most (80+%) of memory accesses are READs, but 
writes are essential. How should we handle writes?  

Policies:
● WRITE-THROUGH: CPU writes are cached, but also written to main 

memory (stalling the CPU until write is completed). Memory always 
holds “the truth”.

● WRITE-BACK: CPU writes are cached, but not immediately written 
to main memory.  Memory contents can become “stale”.

Additional Enhancements:
● WRITE-BUFFERS:  For either write-through or write-back, writes 

to main memory are buffered.  CPU keeps executing while writes 
are completed (in order) in the background.

What combination has the highest performance?

17
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Write-Through
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ON REFERENCE TO Mem[X]: Look for X among tags...

HIT:  X == TAG(i) , for some cache line i
READ: return DATA[i]
WRITE: change DATA[i]; Start Write to Mem[X]

MISS: X not found in TAG of any cache line
REPLACEMENT SELECTION:

    Select some line k to hold Mem[X]
READ: Read Mem[X]

Set TAG[k] = X, DATA[k] = Mem[X]
WRITE: Start Write to Mem[X]

Set TAG[k] = X, DATA[k] = new Mem[X]
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Write-Back
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ON REFERENCE TO Mem[X]: Look for X among tags...

HIT:  X = TAG(i) , for some cache line I
READ: return DATA(i)
WRITE: change DATA(i); Start Write to Mem[X]

MISS: X not found in TAG of any cache line
REPLACEMENT SELECTION:

Select some line k to hold Mem[X]
Write Back: Write Data(k) to Mem[Tag[k]]

READ: Read Mem[X]
Set TAG[k] = X, DATA[k] = Mem[X]

WRITE: Start Write to Mem[X]
Set TAG[k] = X, DATA[k] = new Mem[X]
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Write-Back w/ “Dirty” bits
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ON REFERENCE TO Mem[X]: Look for X among tags...
HIT:  X = TAG(i) , for some cache line I

READ: return DATA(i)
WRITE: change DATA(i); Start Write to Mem[X], D[i]=1

MISS: X not found in TAG of any cache line
REPLACEMENT SELECTION:

Select some line k to hold Mem[X]
If D[k] == 1 the Write Data(k) to Mem[Tag[k]]

READ: Read Mem[X]; Set TAG[k] = X, DATA[k] = Mem[X], D[k]=0
WRITE: Start Write to Mem[X], D[k]=1

Set TAG[k] = X, DATA[k] = new Mem[X]

MAIN 
MEMORYCPU A Mem[A]

B Mem[B]

TA
G

DAT
A

V

1

1

0
0

0
0

0

D

1

0

Dirty and Valid 
bits are per line 
not per set

What if the cache 
has a block-size 
larger than one?
A) If only one word in 
the line is modified, we 
end up writing back 
ALL words

B) On a MISS, we need 
to READ the line 
BEFORE we WRITE it.

, Read Mem[X]
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Cache Design Summary

Various design decisions the affect cache performance

● Block size, exploits spatial locality, saves tag H/W, but, if blocks 
are too large you can load unneeded items at the expense of 
needed ones

● Write policies
● Write-through – Keeps memory and cache consistent, but high 

memory traffic
● Write-back – allows memory to become STALE, but reduces 

memory traffic

No simple answers, in the real-world cache designs are based on 
simulations using memory traces.
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