
11/30/2018 Comp 411 - Fall 2018

Memory Hierarchy & Caching

1

Still in your Halloween
costume?

It makes me look faster,
don’t you think?

● Memory Flavors
● Principle of Locality
● Memory Hierarchies
● Caches
● Associativity
● Write-through
● Write-back

11/30/2018 Comp 411 - Fall 2018

All Memories aren’t created equal

2

Quantity vs Speed…

Memory systems can be either:
• BIG and SLOW...
 or
• SMALL and FAST.

10-8 10-3 1 100

.1

10

1000

100

1

10-6

HDD (0.02$/GB, 10 mS)

DRAM (4$/GB, 5 ns)

SRAM (500$/GB, 0.2 ns)

Access Time
.01

$/GB
Is there an
ARCHITECTURAL solution
to this DILEMMA?

1

SSD (0.5$/GB, 300 nS)

11/30/2018 Comp 411 - Fall 2018

Tricks for Increasing Throughput

3

R
ow

 A
dd

re
ss

 D
ec

od
er

Col.
1

Col.
2

Col.
3

Col.
2N

Row 1

Row 2

Row 2N

Column Multiplexer/Shifter
N

N

Multiplexed
 Address bit lines word lines

memory cell
(one bit)

Dt1 t2 t3 t4

The first thing that
should pop into your
mind when asked to
speed up a digital design…

PIPELINING
Synchronous DRAM

(SDRAM)
20nS reads and writes

($5 per Gbyte)

Clock

Data
out

Double Data Rate
Synchronous DRAM

(DDR)

11/30/2018 Comp 411 - Fall 2018

Another Trick

4

The second thing that
should try when asked to
speed up a digital design…

InterleavingAddr

MEM0

Data

Addr

MEM1

Data

Addr

MEM2

Data

Addr

MEM3

Data

Address[31:4]

Address[3:2]

Where did
Address[1:0] go?

0 1 2 3

If only the lower order
addresses change, we
need only wait the Tpd
of the mux.

A limitation of both
pipelining and interleaving
is their assumption that
addresses are sequential!

Which is approximately
true!

Accessing 4 memories at
the same time has 4x the
throughput. Also, every
4th word is in a
different memory.

11/30/2018 Comp 411 - Fall 2018

Typical Memory Reference Patterns

5

time

address

data

stack

program

MEMORY TRACE –
 A temporal sequence
 of memory references
 (addresses) from a
 real program.

TEMPORAL LOCALITY –
 If an item is referenced,
 it will tend to be
 referenced again soon

SPATIAL LOCALITY –
 If an item is referenced,
 nearby items will tend
 to be referenced soon.

TWO KEY OBSERVATIONS:

11/30/2018 Comp 411 - Fall 2018

Exploiting the Memory Hierarchy

6

Approach 1 (Cray, others): Expose Hierarchy
 • Registers, Main Memory,
 Disk each available as

 storage alternatives;

• Tell programmers: “Use them wisely”

Approach 2: Hide Hierarchy
• Programming model: SINGLE kind of memory, single

address space.
• Machine AUTOMATICALLY assigns locations to fast or

slow memory, depending on
usage patterns.

CPU

SRAM
MAIN
MEM

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”

11/30/2018 Comp 411 - Fall 2018

The Cache concept:
Program-Transparent Memory Hierarchy

7

Cache contains TEMPORARY COPIES of
selected main-memory locations... eg. Mem[100] = 37

GOALS:
1) Improve the average access time

 2) Transparency (compatibility, programming ease)

1.0 (1.0-α)
CPU

"CACHE"

DYNAMIC
RAM

"MAIN MEMORY”
100 37

α
(1-α)

HIT RATIO: Fraction of refs found in CACHE.
MISS RATIO: Remaining references.

Challenge:
Make the
hit ratio, 𝛂,
as high as
possible.

Why, on a miss, do I
incur the access penalty
for both main memory
and cache?

404 42

tave = 𝛂 tc + (1-𝛂)(tc + tm) = tc + (1-𝛂)tm

11/30/2018 Comp 411 - Fall 2018

How High of a Hit Ratio?

Suppose we can easily build an on-chip static memory with a 800 pS
access time, but the fastest dynamic memories that we can buy for
main memory have an average access time of 10 nS. How high of a hit
rate do we need to sustain an average access time of 1 nS?

8

Solve for 𝛂: tave = tc + (1-𝛂)tm
𝛂 = 1 - (tave- tc)/tm = 1 - (1-0.8)/10 = 98%

Wow, caches really need to be good! And they are!

11/30/2018 Comp 411 - Fall 2018

Basic Cache Algorithm

9

ON REFERENCE TO Mem[X]: Look for X among
cache tags...

HIT: X == TAG(i) , for some cache line i
READ: return DATA(i)
WRITE: change DATA(i);

Start Write to Mem(X)

MISS: X not found in any TAG of the cache

REPLACEMENT SELECTION:
Select some LINE k to hold Mem[X] (Allocation)

READ: Read Mem[X]
Set TAG(k)=X, DATA(K)=Mem[X]

WRITE: Start Write to Mem(X)
Set TAG(k)=X, DATA(K)= new Mem[X]

MAIN
MEMORY

CPU

(1−α)

Tag Data

A

B

Mem[A]

Mem[B]

“X” here is a
memory address.

Cache
“Lines”

Cache-lines might contain multiple
sequential words from memory,
thus amortizing the number of
tag bits per data bits.

11/30/2018 Comp 411 - Fall 2018

Searching for Tags

Associativity: Degree of parallelism used to lookup tags

Fully-Associative Cache:

10

TAG Data

= ?

TAG Data

= ?

TAG Data

Incoming
Address

HIT

Data
 Out

The extreme in
associatively:
 All TAGS are searched
 in parallel

Data items from *any*
address can be located in
any cache line

= ?

11/30/2018 Comp 411 - Fall 2018

The other extreme

Direct-mapped: If it is in cache it is in exactly one place

Non-associative or “one-way” associative. No parallelism.
Uses only one comparator and ordinary RAM for tags:

11

TAG
memory

 Data
Memory

A
dd

r

A
dd

r

Data Data

= ?

Cache Address

Memory Address Hit Data
Out

Low-cost leader:

Direct-mapped caches
require a means for
translating “Memory
Addresses” to “Cache
Addresses”. A simple
hash function.

11/30/2018 Comp 411 - Fall 2018

Direct-Mapped Example

12

1024 44 99
1000 17 23
1040 1 4
1016 29 38
Tag Data

1000 17
1004 23
1008 11
1012 5
1016 29
1020 38
1024 44
1028 99
1032 97
1036 25
1040 1
1044 4

Memory

With 8-byte lines, 3 low-order bits determine the byte within the line.

With 4 cache lines, the next 2 bits can be used to decide which line
to use

102410 = 100000000002 → line = 002 = 010

100010 = 011111010002 → line = 012 = 110

104010 = 100000100002 → line = 102 = 210

Line 0

Line 1

Line 2

Line 3

Cache

11/30/2018 Comp 411 - Fall 2018

Direct-Mapped Miss

13

What happens when we now ask for address 1008?
100810 = 011111100002 → line = 102 = 210

but earlier we put 1040 there...
104010 = 100000100002 → line = 102 = 210

1024 44 99
1000 17 23
1040 1 4
1016 29 38
Tag Data

1008 11 5

Line 0

Line 1

Line 2

Line 3

Cache

1000 17
1004 23
1008 11
1012 5
1016 29
1020 38
1024 44
1028 99
1032 97
1036 25
1040 1
1044 4

Memory

11/30/2018 Comp 411 - Fall 2018

Fully-Assoc. vs. Direct-mapped

14

Fully-associative N-line cache:

● N tag comparators, registers
used for tag/data storage ($$$)

● Location A can be stored in ANY
of the N cache lines; no
“collisions”

● Needs a replacement strategy to
pick which line to use when
loading new word(s) into cache

Direct-mapped N-line cache:

● One tag comparator, SRAM used
for tag/data storage ($)

● Location A is stored in a
SPECIFIC line of the cache
determined by its address;
address “collisions” possible

● Replacement strategy not
needed: each word can only be
cached in one specific cache line

COLLISIONs occur when there are
multiple items that we’d like to keep
cached, we have room, but our
management policies only keeps a subset
of them.

Is there something
in-between?

11/30/2018 Comp 411 - Fall 2018

N-Way Set-Associative Cache

15

k

HIT

DATA TO CPU

INCOMING ADDRESS

t

MEM DATA

There are
N possible
places that
a given
item could
be stored
in the
cache

 TARGET INDEX “N direct-mapped caches”, each with 2t entries of N lines

=?

L
ine

s
th

at
 s

ha
re

 a
 c

om
m
on

 in
de

x
ar

e
a

se
t

=?=?

11/30/2018 Comp 411 - Fall 2018

Associativity vs. Miss Rate

16

Miss
rate
(%)

Cache size (bytes)

Associativity

8-way is (almost) as effective as fully-associative

11/30/2018 Comp 411 - Fall 2018

Handling WRITES

Observation: Most (80+%) of memory accesses are READs, but
writes are essential. How should we handle writes?

Policies:
● WRITE-THROUGH: CPU writes are cached, but also written to main

memory (stalling the CPU until write is completed). Memory always
holds “the truth”.

● WRITE-BACK: CPU writes are cached, but not immediately written
to main memory. Memory contents can become “stale”.

Additional Enhancements:
● WRITE-BUFFERS: For either write-through or write-back, writes

to main memory are buffered. CPU keeps executing while writes
are completed (in order) in the background.

What combination has the highest performance?

17

11/30/2018 Comp 411 - Fall 2018

Write-Through

18

ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X == TAG(i) , for some cache line i
READ: return DATA[i]
WRITE: change DATA[i]; Start Write to Mem[X]

MISS: X not found in TAG of any cache line
REPLACEMENT SELECTION:

 Select some line k to hold Mem[X]
READ: Read Mem[X]

Set TAG[k] = X, DATA[k] = Mem[X]
WRITE: Start Write to Mem[X]

Set TAG[k] = X, DATA[k] = new Mem[X]

11/30/2018 Comp 411 - Fall 2018

Write-Back

19

ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X = TAG(i) , for some cache line I
READ: return DATA(i)
WRITE: change DATA(i); Start Write to Mem[X]

MISS: X not found in TAG of any cache line
REPLACEMENT SELECTION:

Select some line k to hold Mem[X]
Write Back: Write Data(k) to Mem[Tag[k]]

READ: Read Mem[X]
Set TAG[k] = X, DATA[k] = Mem[X]

WRITE: Start Write to Mem[X]
Set TAG[k] = X, DATA[k] = new Mem[X]

11/30/2018 Comp 411 - Fall 2018

Write-Back w/ “Dirty” bits

20

ON REFERENCE TO Mem[X]: Look for X among tags...
HIT: X = TAG(i) , for some cache line I

READ: return DATA(i)
WRITE: change DATA(i); Start Write to Mem[X], D[i]=1

MISS: X not found in TAG of any cache line
REPLACEMENT SELECTION:

Select some line k to hold Mem[X]
If D[k] == 1 the Write Data(k) to Mem[Tag[k]]

READ: Read Mem[X]; Set TAG[k] = X, DATA[k] = Mem[X], D[k]=0
WRITE: Start Write to Mem[X], D[k]=1

Set TAG[k] = X, DATA[k] = new Mem[X]

MAIN
MEMORYCPU A Mem[A]

B Mem[B]

TA
G

DAT
A

V

1

1

0
0

0
0

0

D

1

0

Dirty and Valid
bits are per line
not per set

What if the cache
has a block-size
larger than one?
A) If only one word in
the line is modified, we
end up writing back
ALL words

B) On a MISS, we need
to READ the line
BEFORE we WRITE it.

, Read Mem[X]

11/30/2018 Comp 411 - Fall 2018

Cache Design Summary

Various design decisions the affect cache performance

● Block size, exploits spatial locality, saves tag H/W, but, if blocks
are too large you can load unneeded items at the expense of
needed ones

● Write policies
● Write-through – Keeps memory and cache consistent, but high

memory traffic
● Write-back – allows memory to become STALE, but reduces

memory traffic

No simple answers, in the real-world cache designs are based on
simulations using memory traces.

21

