
11/28/2018 Comp 411 - Fall 2018

Pipeline Hazards

1

● Short lecture with
8th and final lab on 11/30

● 5th and final problem due on 12/1

11/28/2018 Comp 411 - Fall 2018

ARM 3-stage pipeline

2

PC

+4
Instruction
Memory

Addr

Data

32
4-port

Register file

 RA RB RC
 WA

 WD
 WE
 DA DB DC

ALU

Rd[15:12]

Rn[19:16]
Rm[3:0]
Rs[11:8]

EN

 A B Shft
Rot/Asr/Rgt
 Sub/Rsb
 Math
 N,Z,C,V R

Func
dec

Opcode
[24:21]

Shift[11:7]

LA[6:5]

WERF
dec

Cond[31:28]
PSR

PSR

 0 1[4]

Opcode[24:23]

 1 0

Imm[11:0]
 24 x “0”

Itype 1 0Itype

Shift[11:8] “0”

Data
Memory

 1 0Dtype

 20 x “0”

Imm[7:0]

 1 0Dtype

 5 x “0”

 Addr
 Datain Dataout

 Wr

 0 1
dTtype

 0 1fTtype

Rd[15:12]

StrData

StrData

dTtype

 Cond
I20

Cond

1

0

“14”
Btype

Add

 1 0

1

0

Btype

Btype
Cond

SSSSSS:Imm[23:0]:00

BXreg

Cond
 0

1

BXinst

BXreg

S[20] Cond

Clr

Reset and Interrupt Logic

Clr

Reset and Interrupt Logic
Reset

Interrupt

Fetch

Reset

● Fetch, Decode, and
Execute Stages

● Instructions are decoded in
both the Fetch and Decode
stages

● Register ports are “Read” in
the Decode stage and
“Written” at in the end of the
Execute stage

● PC+4, register reads for
stores (StrData). and BX
source (BXreg) are “delayed”
for use in later stages

Fetch

Decode

DecodeDecodeDecodeDecode

Decode

Itype
Dtype
fTtype

Fetch
Instr
dec

Decode

BXinst

ERd

dTtype
Btype

Decode
Instr
dec

WERF

WERF

ERd

11/28/2018 Comp 411 - Fall 2018

Simple Instruction flow

Consider the following instruction sequence:

Instruction becomes available at the
end of the Fetch stage

Operands at the end of Decode

Destination and PSR are updated at the end of Execute

3

...
sub r0,r1,r2
add r3,r1,#2
and r1,r1,#1
cmp r0,r4

i i+1 i+2 i+3 i+4 i+5

Fetch sub r0,r1,r2 add r3,r1,#2 and r1,r1,#1 cmp r0,r4

Decode sub r0,r1,r2 add r3,r1,#2 and r1,r1,#1 cmp r0,r4

Execute sub r0,r1,r2 add r3,r1,#2 and r1,r0,#1 cmp r0,r4

Time (in clock cycles)

Pipeline

psr

r1
r2

r0

r1
#2

r3

r1
#1

r1

r4
r0

11/28/2018 Comp 411 - Fall 2018

Pipeline Control Hazards

Pipelining HAZARDS are situations where
the next instruction cannot execute in the
next clock cycle. There are two forms of
hazards, CONTROL and STRUCTURAL.

Consider the instruction sequence shown:

4

...
loop: add r0,r0,r0
 cmp r0,#64
 ble loop
 and r1,r0,#7
 sub r1,r0,r1

i i+1 i+2 i+3 i+4 i+5

Fetch add r0,r0,r0 cmp r0,#64 ble loop and r1,r0,#7 sub r1,r0,r1 add r0,r0,r0

Decode add r0,r0,r0 cmp r0,#64 ble loop and r1,r0,#7

Execute add r0,r0,r0 cmp r0,#64 ble loop

Time (in clock cycles)

Pipeline

When the branch instruction
reaches the execute stage the
next 2 instructions have already
been fetched!

???

???

11/28/2018 Comp 411 - Fall 2018

Branch Fixes

Problem: Two instructions following a branch are fetched before the
branch decision is made (to take or not to take)

Solutions:
1. Program around it. Define the ISA such that the branch does

 not take effect until after instructions in the “DELAY SLOTS”
 complete. This is how MIPS pipelines work. It leads to ODD looking
 code in tight (short) loops. Of course you could always put NOPs
 in the delay slots.
 2. Detect the branch decision as early as possible, and ANNUL
 instructions in the delay slots. This is what ARM does.

5

11/28/2018 Comp 411 - Fall 2018

Early Detect and Annul

We can detect branch instructions (B, BL, or BX) in the Decode
stage. The decision to branch is decided
no later than the current instruction in
the Execute stage. Thus, we could make
The branch decision in the Decode stage.
We then annul the following instruction by
disabling WERF and PSR updates!

6

...
loop: add r0,r0,r0
 cmp r0,#64
 ble loop
 and r1,r0,#7
 sub r1,r0,r1

i i+1 i+2 i+3 i+4 i+5

Fetch add r0,r0,r0 cmp r0,#64 ble loop and r1,r0,#7 add r0,r0,r0 cmp r0,#64

Decode add r0,r0,r0 cmp r0,#64 ble loop and r1,r0,#7 add r0,r0,r0

Execute add r0,r0,r0 cmp r0,#64 ble loop

Time (in clock cycles)

Pipeline

If we detect the branch in the decode
stage then the PSR state of the
instruction in the Execute stage can
be combined to change the next PC.

NOP

It helps that the
ALU is not used by
branch instructions

 Making the
next instruction a NOP!

11/28/2018 Comp 411 - Fall 2018

The cost of taken branches

When an ARM branch is taken the branch instructions are
effectively 2 cycles rather than 1 when they aren’t. In a MIPS-like
instruction set, one can often fill the delay slots with useful
instructions, but they are executed whether or not the branch is
taken.

The ARM approach is easier to understand, and since it does not
“EXPOSE” the pipeline, it also allows for an alternative number of
pipeline stages to be implemented in future designs, while conserving
code compatibility.

Lastly, using ARM, many conditional branches can be eliminated using
the condition execution, which pipelines beautifully!

7

11/28/2018 Comp 411 - Fall 2018

Structural Pipeline Hazards

There’s another problem with our code fragment!

The destination register of instructions are
written at the end of the Execute stage.
However the following instruction might use
this result as a source operand.

8

...
loop: add r0,r0,r0
 cmp r0,#64
 ble loop
 and r1,r0,#7
 sub r1,r0,r1

i i+1 i+2 i+3 i+4 i+5

Fetch add r0,r0,r0 cmp r0,#64 ble loop and r1,r0,#7 add r0,r0,r0 cmp r0,#64

Decode add r0,r0,r0 cmp r0,#64 ble loop and r1,r0,#7 add r0,r0,r0

Execute add r0,r0,r0 cmp r0,#64 ble loop NOP

Time (in clock cycles)

Pipeline

The “CMP” instruction needs to access the contents of R0
before it is actually written are the end of i+2

11/28/2018 Comp 411 - Fall 2018

Data Hazards

Problem: When a register source is needed from a later stage of the
pipeline before it is written.

Solutions:

1. Program around it. One could document the weird semantics-- “You
can’t reference the destination register of an instruction in the
immediately following instruction.” Would make make assembly
language even harder to understand. Would expose the pipeline,
once again making future improvements difficult to implement
while maintaining code compatibility.

2. Hardware bypass multiplexers.

9

11/28/2018 Comp 411 - Fall 2018

Source Bypassing

The idea here is to load the
value that to be saved in the
destination register also into the
pipeline registers that hold the
ALU operands.

We also need bypass
MUXes on the StrReg
and BXreg pipeline
registers.

10

ALU

Rd[15:12]

EN

 A B Shft
Rot/Asr/Rgt
 Sub/Rsb
 Math
 N,Z,C,V R

Func
dec

Opcode
[24:21]

LA[6:5]

PSR

 1 0Dtype 1 0Dtype

S[20] Cond

DecodeDecodeDecodeDecode

ERd

 0 1 0 1 0 1

From
DA

From
DB

From
DC

RnDec== RdExe

RmDec
==

RdExe

RsDec== RdExe

i i+1 i+2

Fetch add r0,r0,r0 cmp r0,#64 ble loop

Decode add r0,r0,r0 cmp r0,#64

Execute add r0,r0,r0

Pipeline

The new value for R0 will be computed just prior to the rising
clock edge between i+2 and i+3, we can take the output of

 0 1
dTtype

11/28/2018 Comp 411 - Fall 2018

Load/Store Stalls

Load and Store memory accesses are the actual bottleneck of the
ARM pipeline. Also, recall that instructions and load/stores actually
come from the same memory. Thus, we
need to stall instruction fetching to allow
for loads and stores.

11

11

...
loop: ldr r0,[r1,#4]
 add r0,r0,#4
 str r0,[r1,#4]
 sub r0,r0,#4
 and r2,r2,#f

i i+1 i+2 i+3 i+4 i+5 i+6

Fetch ldr r0,[r1,#4] add r0,r0,#4 str r0,[r1,#4] Mem read sub r0,r0,#4 and r2,r2,#f Mem store

Decode ldr r0,[r1,#4] add r0,r0,#4 str r0,[r1,#4] sub r0,r0,#4

Execute ldr r0,[r1,#4] add r0,r0,#4 str r0,[r1,#4]

Time (in clock cycles)

Pipeline

11/28/2018 Comp 411 - Fall 2018

Load/Store stall implementation

Disable loading of pipeline registers for one clock when a
load or store instruction reaches the execute stage.

1. Adding enable lines to the PC
and pipeline registers on the
control path

2. A simple 2-state state machine
to stall the pipeline for 1 state
to allow for the load/store
memory cycle.

12

Instruction
Memory

Addr

Data
Reset and Interrupt Logic

Fetch

Decode

EN

EN

I27
I26

PC EN

D Q NoStall

NoStall

NoStall

NoStall

...

...

11/28/2018 Comp 411 - Fall 2018

Where does this leave us

Overall we can now nearly triple the clock rate.
Instructions have a throughput of one-per-clock
with the following caveats:

1. Taken branches take 2 cycles.
2. Loads and store take 2 cycles.

You can pipeline an ARM CPU even more. There exist ARM
implementations with 7, 8, and 9 pipeline stages. But the
overhead of bypass paths and stall cases increase.

13

3x speed up:
100 MHz clock
now 300 MHz

11/28/2018 Comp 411 - Fall 2018

Reality vs Specmanship

Assuming approximately 10% of instructions executed are
branches, and of those 80% of the time they are taken,
and 15% of instruction executed are loads or stores, what
sort of real speed up do we expect?

14

Perfbefore= (100) * 1 = 100 Clocks

Perfafter= (10)((0.8) * 2 + (0.2) * 1) + 15 * 2 + 75 * 1 = 123 Clocks

* 10 * 10-9 sec/clock = 1000 * 10-9 secs

123 * 3.333 * 10-9 sec/clock = 410 * 10-9 secs

Speedup = ----------------- = 1000/410 = 2.439 X
Perfbefore
Perfafter

11/28/2018 Comp 411 - Fall 2018

Next time

It appears memory access time is our real bottleneck.
What tricks can be applied to improving CPU
performance in this case?

● Interleaving
● Block-transfers
● Caching

15

