PIPELINE HAZARDS

1/28/2018 Comp 4 -

Short lecture with
8th and findl lab on 1/30
54h and Final problem due on 12/

Fall 2018

]

Resaf= PC $555S8:Imm[23:0]:00
ARM B-STAGE PIPELINE ¥
Instruction
Memory
e Fetch, . and 11 R =
Execute 5+aﬁecs St
. . RM[30] .
Instructions are decoded in e —— ™
both the Fetch and Decode W) Re;‘;’:;?ﬁlem
9 +aaeg i DA oo (—DB DC StrData
Register ports are 'Read" in o ey L\BL
:rhe .Dec?de §+aae and > e D0 -
Written' at in the end of the = e i
Execute stage I e | l l
PC+4, register reads for iNom aﬁiﬁ
stores (StrData). and BX o e R
source (BXreg) are 'delayed' e e
For use in later stages e e
ddddd Data
=D Memory
1/2.8/2.018 Comp 4l - Fall 2018 Z

SIMPLE INSTRVCTION FLOW

Consider the Po\\owir\@ instruction sequence:

Instruction becomes availdble at the
end ofF the Fetch stage

OPer‘ar\ds at the end ofF Decode

sub
add
and
cmp

ro,r1,r2
r3,r1,#2
r1,r1,#1
ro, r4

Destination and PSR are updaJred at the end ofF Execute

Time (in clock cycles)

i i+1 i+2 i+3
L Fetch sub r0,r1,r2 add r3,r1,#2 | and r1,r1,#1 cmp r0,r4
é Decode sub r0,r1,r2 add r3,r1,#2 . and r1,r1,#1
mv Execute subr0O,r1,r2 | add r3,r1,#2

I/2-8/2-018 Comp 41 - Fall 208

>
i+4 i+5

cmp r0,r4

and r1,r0,#1 cmp r0,r4

PIPELINE CONTROL HAZARDS

PiPelining HAZARDS are situations where
the next instruction cannot execute in the
next clock cycle. There are two Forms of iéép. add ro ro. ro

ble 1loop
Consider the instruction sequence shown: and r1,r0,#7

sub r1,r0,r1

Time (in clock cycles)

>
i i+1 i+2 i+3 i+4 i+5
v Fetch add r0,r0,rO | cmp r0,#64 ble loop and r1,r0,#7 | subr1,rO0,r1 add r0,r0,r0
é Decode add r0,r0,r0 | cmp r0,#64 ble loop and r1,r0,#7 ?7??
mv Execute add r0,r0,rO | cmp r0,#64 ble loop ?22??

When the branch instruction
\. / reaches the execute stage the
next 2 instructions have already
been fetched!
I/28/2.018 Comp 4 - Fall 2018

P N
BrANCH FIXES I’I-n

¢

Problem: Two instructions Po\lowina a branch are Fetched before the
branch decision is made (to take or not to take)

Solutions:
. Program around it. Define the ISA such that the branch does

not take effect until after instructions in the 'DELAY sSLOTS'
complete. This is how MIPS pipelines work. It leads to ODD looking
code in tight (short) loops. OF course you could always put NOPs
in the delay slots.

2. Detect the branch decision as early as possible, and ANNUL
instructions in the delay slots. This is what ARM does.

1/2.8/2.018 Comp 4l - Fall 2018 5

I# helps that the
ALV is not used by

EARLY DETECT AND ANNVUL

branch instructions\

)

We can detect branch instructions (B, BL, or BX) in the Decode

9+age. The decision to branch is decided
ho later than the current instruction in

loop: add r@,r0,r0
the Execute stage. Thus, we could make cmp r0, #64
The branch decision in the Decode 9+aae. ble 1loop
We then annul the Pollowina instruction by and r1,r0,#7
clic;alalina WERF and PSR upolaJrec;! Moking the sub r1,r0,rT
next instruction a NOPI Time (in clock cycles)
>
[i+1 i+2 i+3 i+4 i+5
v Fetch add r0,r0,rO | cmp r0,#64 ble loop and r1,r0,#7 /edd r0,r0,r0 cmp r0,#64
5
% Decode add r0,r0,rO | cmp r0,#64 ble loop and r1,r0,#7 | add r0,r0,r0
®
\7 Execute add r0,r0,rO | cmp r0,#64 ble loop NOP

If we detect the branch in the decode
B stage then the IR state of the

instruction in the Execute stage can

be combined fo change the next PC.

I/2-8/2-018 Comp 41 - Fall 208

=\
THE COST OF TAKEN BRANCHES L]

¢

When an ARM branch is taken the braonch instructions are
eH:echively 2 cycles rather than | when they aren+. In o MIPS-like
instruction set, one can often Fill the delay slots with useful

instructions, but they are executed whether or not the branch is
tak.en.

The ARM approach is easier to understand, ond since it does not
'EXPOSE" the pipeline, it dlso dlows for an alternative number of
pipeline stages to be implemented in future desiﬂns, while conserving
code compatibility.

Lastly, using AR M, many conditional branches can be eliminated using
the condition execution which Pipelines IoeaquiPully!

1/2.8/2.018 Comp 4l - Fall 2018 7

STRUCTURAL PIPELINE HAZARDS

There's another Prololem with our code ?raamenﬂ

The destination r‘eaic;Jrer‘ of instructions are

loop: add

ro,ro, ro
written at the end of the Execute stage. cmp r0,#64
However the Po\lowing instruction miath use ble loop
: and r1,r0,#7
this result as a source operand
sub r1,r0,r1
Time (in clock cycles)
>
[i+1 i+2 i+3 i+4 i+5
w/| | Fetch add r0,r0,rO | cmp r0,#64 ble loop and r1,r0,#7 | add r0,r0,rO cmp r0,#64
.E.
% Decode add r0,r0,r0 cmp#64 ble loop and r1,r0,#7 | add r0,r0,r0
®
\7 Execute add r0,r0,rO | cmp r0,#64 ble loop NOP
The "CMP” instruction needs o access the contents of RO
U4 / before it is actually written are the end of +2
1/2.8/2.018 Comp 4l - Fall 20

—~—
DATA HAZARDS I’I-n

¢

Problem: When a register source is heeded From a later stage of the
pipeline belore it is written

Solutions:

L Program around it. One could document the weird semantics— "You
cant reference the destination register of an instruction in the
immediately f—ollowinﬁ instruction” Would make make assembly
longuage even harder to understond Would expose the pipeline,
once again making Future improvements dibficult to implement
while maintaining code compatibility.

2. Hardware bypass multiplexers.

1/2.8/2.018 Comp 4l - Fall 2018 9

=\
SOVRCE BYPASSING L]

—
From From Flg%m
. . DA DB
The idea here is to load the | _ it I
value that to be saved in the ST s B e/ B I
Decode |>Decode| [>Decode| [~Decode
destination reﬂic;Jrer' also into the [ng;;g]eﬁ A j
L . o | Seard ALU
pipeline registers that hold the |]\4% -
Rd[15:12] ERd - A
ALU operands. = R
PSR v
We also need bypass \
MuXes oh the StrReg | 1 +2
ar\d ereﬁ PiPG\il’le %,. Fetch add r0,r0,r0O | cmp r0,#64 ble loop
. 2| | Decode add r0,r0,rO | cmp r0,#64
registers. 3
\7 Execute add r0,r0,r0

The new value for RO will be computed just prior to the rising —__ 4
clock edge between +2 and i+3, we can take the output of

1/2.8/2.018 Comp 4l - Fall 2018 10

LoAD/STORE STALLS

Ll

—

L ood and Store memory occesses are the actual bottleneck. of the

ARM pipeline. Also, recall that instructions aond lood/stores actually

come From the same memory. Thus, we

heed to stall instruction Pei'chihﬂ to allow loop: 1ldr r9,[r1,#4]
for loads and stores. add ro,ro,#4
str r0,[r1,#4]
sub ro,ro0,#4
and r2,r2,#f
Time (in clock cycles)
>
[i+1 i+2 i+3 i+4 i+5 i+6
v Fetch Idr rO,[r1,#4] | add rO,rO,#4 | strrO,[r1,#4] H Memread | subr0,r0,#4 | and r2,r2,# | Mem store
.E.
® | | Decode Idr r0,[r1,#4] | add rO,rO,#4Qstr r0,[r1,#4] | sub ro,ro,#4Q
S
o
Y Execute Idr rO,[r1,#4] add rO,r0,#4 | strr0,[r1,#4]

1/28/2018 Comp 41 - Fall 2018

=\
LOAD/STORE STALL IMPLEMENTATION |||

S

Disable loadinﬁ ofF pipeline registers For one clock when a
load or store instruction reaches the execute stoge.

| Addina enable lines to the PC

and pipeline registers on the = Pf oS!
control path .
2. A simple 2-state state machine | Memory m
to stall the pipeline for | state P s
to dlow for the load/store
memor-y cyc\e. oecoia s Nostal
e Lses
\/

I1/28/2018 Comp 4l - Fall 2018 7

=
WIHERE DOES THIS LEAVE VS ﬁiﬂ

S

Overal we can now near'ly +r'iple the clock rate.
lhstructions have a ’rhrouahpu’r ok one—Per—clock

. . 3x speed up:
with the f—o\\ownnﬂ caveats: 100 s ok
_\’ ‘/now 300 MHz
. Taken branches take 2 cyc\es. 2 ¢

2. Loads and store toke 2 cycles.

You can Pipe\ine on ARM CPU even more. There exist ARM
implementations with 7, 8, and 9 pipeline stoges. But the
overhead of Iaypac:»c; PaJrhc; and stall cases increase.

1/2.8/2.018 Comp 4l - Fall 2018 13

=
REALITY VS SPECMANSHIP I’laﬂ

S

Assuming approximately 10% of instructions executed are
branches, ond of those 807% ok the time they are taken,
and 5% of instruction executed are loads or stores, what
sort ok real speed up do we expect?

perﬁbe%r; (100) * I =100 Clocks* 10 * 107 sec/clock = 1000 * 107 secs

PerPaHe; (0X(08) * 2 + (02)Y*) + 1B * 2 + 75 * | = 23 Clocks

23 * 3333 % 107 sec/clock = 410 ¥ 107 secs

before. = 1000/ 410 = 2.439 X

1/2.8/2.0186 Comp 4l - Fall 20186 14

P\
NEXT TIME i

I+ appears memory access time is our real bottleneck.
What tricks can be applieal to improving CPU
PerPormanae in this case?

o |n+erleavinﬁ
e Block-transfers
o) Cachinﬂ

BEING FiVE A Bov AND His BLOG BY GEORGE SFARNAS @ 1000
MY COMPUTER'S BEEN IT CREEPS ALONG, HMMM, MY
RUNNING SLOW LATELY, THEN FREEZES, THEN COMPUTER SOUNDS
MY DAD SAID IT NEEDS STUTTERS, THEN STOPS, | | LIKE MY GRANDFATHER...
THEN CREEPS ALONG MAYBE GRANDPA NEEDS
AGAIN, THEN FREEZES... MORE RAM

WWW.BEINGFIVE.COM

1/2.8/2.018 Comp 4l - Fall 2018 5

