COMPUTER PERFORMANCE

He said, we need to
squeeze the clock

Qo Y

1/14-/2.018 Comp 41 - Fall 208

—

D

]

= PC SSSSSS:Imm[23:01:00
I

WMHERE WE LEFT OFF -

Pl

|

—E<—
é@f

Instruction I
Last time we had implemenJreol all Memory - ereg

Reset
Interrupt] Reset and Interrupt Logic

O'p the bGGiC instructions UGil’lﬁ a Rd[15:12]
7 %

Rs[11:8]
RM[3:0]

control path and a data path. We SIsLs
9+|“ need +O add GUPPOY‘+ ,por- 32,er[15:12] ‘*14"%_)7“% 4-?)Bort RC B

Cond[31:28 P f
B2 e), REQiSter file wo

PSR—{ 4o

RESET and |n+err—LJP+9 Opcode(24:23] Cond DA D8 _rc StrData

Shift[11:7] BXreg <€—

[4]

- Imm[11: Imm[7:0]
First, we set the PC to a khown | %151 i iype 7@7
1 . " - . s
state by clearing it (set it to all oo ‘%‘17

Dtype L 7

zeros) on the next clock edﬂe. Opcode VAL
LASS] | "yor Qore> ALU
NZCV R e 0\
A A

But, that is hot sufFicient. We also - -
need to load the ¥ DT A

5 Data
! @_) e
Memory
2 @BXinst
2

I1/14-/2.018 Comp 41 - Fall 2018

RESET AND INTERRVPT LoasIC

This can be accomplished with JueJr a Reset | Inferrupt | s, | s,
Mux al’ld a 9+a+8 maChlne 0 0 00 00
On RESET, two instructions are inserted 1 X 00 | 01
into control PaJrh bypassir\ﬁ memor-y. X X 01 [10
_ X X 10 | 00
On INTERRUPT, a branch and link
. . L 0 1 00| 11
instruction is inserted
0 X 111 00
Idr r13,[r0,-r0]
Instr mem Idr r15, [r15] Interrupt—.
data[f«m ' b | #8 E}}D — s
S1
j = A
Reset (O 1 2 3 =
Interrupt I?SS,\T S\sel
! o D QS0
1 Reset /\

Reset FSM

I1/14-/2.018 Comp 41 - Fall 2018

Wy STUDY PERFORMANCE?

1/14/2.018

Helps us to make in+e\|iaen+ choices

Helps us see +Inrough marke’rina hype
AfFects compu’rer organization

(Pipelinin@ caches, e+c.?

Why is some hardware Faster than others?
What Factors ofF system performoance are
hardware related?

o Do we need a new machine,

O more memory

o a better compiler

O or a hew 0S~?

How does a machine's instruction set af-fect its
Perqcormance?

Comp 41 - Fall 208

WHAT AIRPLANE HAS THE BEST PERFORMANCE?|| ||

Aircraft Passengers Range (mies) speed (mph)
Boeing 737-100 32 &30 598
Boeing 747 470 4150 GlO
BAC/Sud Concorde (0] 4000 350
Douglas DC-8-50 4G 8720 544

How much faster is the Concorde than the 7472 2213 X
How much lorger is the 747's capocity than the Concorde? 465 X

It is roughly 4000 miles From Raleigh to Paris. What is the
+Inr'ouahpu+ of the 747 in Pasc;enﬂers/hr? The Concorde?

470(CI0Y/4000 = NG5 pass/hr 01 (350)/4000 = 340875 pass/hr

What is the latency of the 7472 4000/CI0 = G56G hr/pass
The Concorde? 4000/B50 = 2.9G hr/pass

1/14-/2.018 Comp 4l - Fall 2018 5

PERFORMANCE METRICS

Latency: Time From an input to its correspor\oﬁr\g output

- How long does it take For my progrom to run?
- How long must | wait after typing return For the result?

Throughput: The rate at which new outputs are aener'aJred
- How many calculations per second?
- What is the averoge execution rate of my program?
- How much work is getting done?

By running a program on 20 difFerent input Fies on the fastest
available processor, what Per?ormance metric do we imPr'ove?

La-l'ency

By running our Progr'am simultaneously on 20 CPU's, each assighed on
input File, what performaonce metric do we improve?
Thr'oughpui'

1/14-/2.018 Comp 41 - Fall 208

PERFORMANCE TRADEOFFS

|
®

1/14/2.018

Maximum Performance:
measured Iay the "number of
instructions executed per second"

Minimum Cost: determined by the
size-of-the-circuit/number-of-c omponerﬁs-uc;ed
Pluc; Power‘/coo\inﬂ costs

Best Price/Performance: measured
on the ratio of CPU-cost to number of
instructions executed per sec.

Performance/Watt instructions per
second per watt

Comp 41 - Fall 2018

EXECUTION TIME

Elapseal Time/Wall Clock. Time

counts everything (disk and memory accesses, I/O etc.)
a useful humber, but often not aooal For comparison purposes

CPU time
Doesn't include 1/O or time spenJr r'ur\nir\a other '

Programs cah be broken up into 9y9+em time,
ond user time

Our Focus: user CPU time

Time spent execu+inﬂ actual instructions of ‘our program

1/14-/2.018 Comp 41 - Fall 208

DEFINITION OF PERFORMANCE

For some program r‘unnir\a oh machine X,

PerPor'mancex = Program Executions / Time, (executions/sec)

8

"X is N times Faster than Y"

PerPormanceX / PerPor‘mance\/ =N

Problem:
Machine A runs a progrom in 2.0 seconds
Machine B runs the same progrom in 25 seconds
Performance = /20 Performance, = /25

Machine A is (1720)/(/25) = 125 times Faster than Machine B

1/14-/2.018 Comp 41 - Fall 208

ProcrAM CLOCK CYCLES

lhstead of reporﬁng execution time ih seconds, we cah also use cycle counts

(cec/ Proa\mm) * (clocks/sec) = clocks/ progrom

Clocks are when machine-state chanﬂes (csynchronous abstraction):

T T T T am

cycle time = time between rising ed@es of the clock = seconds per clock
clock. rate (‘Pr'equency) = clocks per second (I Hz =1 clock/sec)

A 200 Mhz. clock has a 1/(200 * 10°) = 50 x 107 = 5 S cycle time
OVERCLOCKIing improves Per‘Por'mance (seconds/ Program) by decreasina the

cycle time (c;ecor\dc;/cycle), while hoPina that the Functional blocks continue to
operate os speciﬁieol.

I1/14-/2.018 Comp 41 - Fall 2018

STANDARD COMPUTER PERFORMANCE MEASURES | ||

Milions of Instructions per Second Frequency in Hz
/ | clocks / secor\d/
MIPS = —

I0° clocks / instruction

|

CPI (Aver'age Clocks Per Instruction)

Hi9+or'ica||y=
70's -80's PDP-I, VAX, Intel 8086 CPI > |
90's L_oad/Store RISC machines
MIPS, SPARC, ARM: CPI = |
Your Century Modern CPUs, CPI < |

i7, ARM Cortex-A

I/14/2.018 Comp 4 - Fall 2018 I

HOw T6 IMPROVE PERFORMANCE?

(sec/ Progr'am) (clocks/sec) = clocks/ program

MPS = —

| clocks / second

I0° clocks / instruction

So, to improve PerPormance (ever‘erhing else being equal)

you coan either

Decrease
(improve ISA)

Decrease

Increase

Decrease

1/14/2.018

the # of required clocks For a program, or
the clock cycle time or, said another way,
the clock rate.

the CPI (aver‘aae clocks per instruction)

Comp 41 - Fall 2018

How MaNYy CLOCKS (N A PROGRAM?

Could assume that # of cycles = # of instructions (True
of the minN/ARM implementation developed last lecture).

1st instruction
2nd instruction
3rd instruction

4th
Sth
6th

time

This assumption can be incorrecH
DifFerent instructions take diFfFerent amounts of time.
Memory accesses mighv‘ require more cycles than other instructions.
Loac/—MuHilDIe instructions require rnul+ip/e clock cyc/ec; to execute

Braonches miﬁh-f stall execution rate
Il/14-/2-018 Comp 4 - Fal 2018

EXAMPLE

A Favorite progrom runs in 10 seconds on computer A, which has a
1O Ghz clock. We are trying to decide iF any version ofF a newer
computer B, can run this program in & seconds. The new computer
has a hiaher—clock rate, but requires 12 times as mary clock cycles
as computer A for the some program What clock rate should will be
needed to reach our G second target?

(cec/ Progr‘am) (clock/sec) = (clocks/ Progr'am)
=10 * (1O * 10%) = | * 10°

(clock/sec) = (clocks/ Progr‘am) / (sec/ Pr'o?r'am)
=124 (lO*10°) / & =2 * 10

Don't Panic, can easi\y work this out From basic Prir\ciples

1/14-/2.018 Comp 41 - Fall 208

PERFORMANCE TRAPS

Actual Per'Por'mance is determined by the execution time of a
progrom Hat you care about, not a benchmark nor a clock rate.

Varidbles that impact performonce:
of cycles to execute progrom?
of instructions in a program?
ofF cycles per second?
average * ok cycles per instruction?
average # of instructions per second?

Common PH-PaII:

Thinking only one of these varidbles is indicative of
PerPormance when it really isn't

1/14-/2.018 Comp 41 - Fall 208

CPI EXAMPLE

Suppose we have two implementations of the same instruction set
architecture (ISA).

For some progrom,
Machine A has a clock cycle time of 1hs and a CPI of 05
Machine B has a clock cycle time of 0.4 ns and a CPI ofF 15

What machine is faster For this progrom, ond Iay how much?

L1/ (1 x107)
MPS, = — = 2000 MIPS, 2000
A IO o5 v = = |2
M 1/ (04 x107) - FSe CCe
B™ 0% 5 -

IF two machines have the same ISA and run the same program, which
quan+i+>/ (eq, clock rate CP| execution time # of instructions, MIPS)
will always be identical?

1/14-/2.018 Comp 41 - Fall 208

A COMPILER'S PERFORMANCE IMPACT |||
Two different compiers are being tested for a 500 MHz machine with three
different classes of instructions: Class A, Class B, and Class C, which
reguire one, two, and three cycles (respecﬂvely). Both compilers are used
to produce code for the same a large progrom. The First compiler's code
executes 5 million Class A instructions, | milion Class B instructions, and 2
milion Class C instructions. The second compiler's code executes 7 million
Class A instructions, | milion Class B instructions, and | milion Class C
instructions.

Which program uses the Fewest instructions?
Instructions, = (5+1+2)x10° =8 % 10°

Instructions, = (7+1+Dx10°=9 %x10°

Which sequence uses the Fewest clock cycles?
Cycles, = (5() + (2) + 2(3)) x 10° = B % 10°

Cycles, = (7() + (2) + (3)) x 10° = x 10°
1/14-/2.018 Comp 4l - Fall 2018 7

BENCHMARKS

Performance is best determined by running a real application
Use progroms +ypical ofF exPeched workload

Or, +y|9ic;al ofF exPeched class of applicaﬁons
eq, comPilers/ediJrors, scientific aPPIica+ion9, graphic;, etc.

Small benchmarks

hice For architects and olesianer‘s
easy to standardize
but can be easily abused

SPEC (system Performance Evaluation Cooperative)
companies have agreed on a set ok real programs and inputs
can still be abused
valudble indicator of performoance (and compiler Jrechﬂoloay)

1/14-/2.018 Comp 41l - Fall 2018 18

SPEC CPV 2006

CINT2006 (Integer Component of SPEC CPU2006):

1/14/2.018

Benchmark
400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

Language Application Area

C Programming
Language

C Compression

C C Compiler

C Combinatorial
Optimization

C Artificial Intelligence:
Go

C Search Gene
Sequence

C Artificial Intelligence:
chess

C Physics / Quantum
Computing

C Video Compression

C++ Discrete Event
Simulation

C++ Path-finding Algorithms

C++ XML Processing

Brief Description

Derived from Perl V5.8.7. The workload includes SpamAssassin,
MHonArc (an email indexer), and specdiff (SPEC's tool that checks
benchmark outputs).

Julian Seward's bzip2 version 1.0.3, modified to do most work in
memory, rather than doing I/O.

Based on gcc Version 3.2, generates code for Opteron.

Vehicle scheduling. Uses a network simplex algorithm (which is also
used in commercial products) to schedule public transport.

Plays the game of Go, a simply described but deeply complex game.

Protein sequence analysis using profile hidden Markov models
(profile HMMs)

A highly-ranked chess program that also plays several chess
variants.

Simulates a quantum computer, running Shor's polynomial-time
factorization algorithm.

A reference implementation of H.264/AVC, encodes a videostream
using 2 parameter sets. The H.264/AVC standard is expected to
replace MPEG2

Uses the OMNet++ discrete event simulator to model a large
Ethernet campus network.

Pathfinding library for 2D maps, including the well known A*
algorithm.

A modified version of Xalan-C++, which transforms XML documents
to other document types.

Comp 4l - Fall 20186 19

SPEC CPV 2006

CFP2006 (Floating Point Component of SPEC CPU2006):

Benchmark Language Application Area
410.bwaves Fortran Fluid Dynamics
416.gamess Fortran Quantum Chemistry.

433.milc Cc Physics / Quantum Chromodynamics
434.zeusmp Fortran Physics / CFD
435.gromacs C, Biochemistry / Molecular Dynamics
Fortran
436.cactusADM C, Physics / General Relativity
Fortran
437 leslie3d Fortran Fluid Dynamics
444 namd C++ Biology / Molecular Dynamics
447 dealll C++ Finite Element Analysis
450.soplex C++ Linear Programming, Optimization
453.povray C++ Image Ray-tracing
454 .calculix C, Structural Mechanics
Fortran
459.GemsFDTD Fortran Computational Electromagnetics
465.tonto Fortran Quantum Chemistry
470.1bm C Fluid Dynamics
481.wrf C, Weather
Fortran
482.sphinx3 (o] Speech recognition

Brief Description
Computes 3D transonic transient laminar viscous flow.

Gamess implements a wide range of quantum chemical computations. For the SPEC
workload, self-consistent field calculations are performed using the Restricted Hartree Fock
method, Restricted open-shell Hartree-Fock, and Multi-Configuration Self-Consistent Field

A gauge field generating program for lattice gauge theory programs with dynamical quarks.

ZEUS-MP is a computational fluid dynamics code developed at the Laboratory for
Computational Astrophysics (NCSA, University of lllinois at Urbana-Champaign) for the
simulation of astrophysical phenomena.

Molecular dynamics, i.e. simulate Newtonian equations of motion for hundreds to millions of
particles. The test case simulates protein Lysozyme in a solution.

Solves the Einstein evolution equations using a staggered-leapfrog numerical method
Computational Fluid Dynamics (CFD) using Large-Eddy Simulations with Linear-Eddy Model in
3D. Uses the MacCormack Predictor-Corrector time integration scheme.

Simulates large biomolecular systems. The test case has 92,224 atoms of apolipoprotein A-l.

deal.ll is a C++ program library targeted at adaptive finite elements and error estimation. The
testcase solves a Helmholtz-type equation with non-constant coefficients.

Solves a linear program using a simplex algorithm and sparse linear algebra. Test cases
include railroad planning and military airlift models.

Image rendering. The testcase is a 1280x1024 anti-aliased image of a landscape with some
abstract objects with textures using a Perlin noise function.

Finite element code for linear and nonlinear 3D structural applications. Uses the SPOOLES
solver library.

Solves the Maxwell equations in 3D using the finite-difference time-domain (FDTD) method.

An open source quantum chemistry package, using an object-oriented design in Fortran 95.
The test case places a constraint on a molecular Hartree-Fock wavefunction calculation to
better match experimental X-ray diffraction data.

Implements the "Lattice-Boltzmann Method" to simulate incompressible fluids in 3D

Weather modeling from scales of meters to thousands of kilometers. The test case is from a
30km area over 2 days.

A widely-known speech recognition system from Carnegie Mellon University

1/14-/2.018 Comp 4l - Fall 2018 20

STORIES BENCHMARKS TELL

Single-Threaded Floating-Point Performance

SPECH

+21%

per year

= Intel Xeon

* Intel Core
Intel Pentium

4 Intel Itanium

= Intel Celeron
AMD FX

s AMD Opteron
AMD Phenom

* AMD Athion
IBM POWER

» PowerPC
Fujitsu SPARC
Sun SPARC
DEC Alpha

= MIPS

* HP PA-RISC

B

I1/14-/2.018 ComP 41 - Fall 2018

AMDANL'S Law

(A.K.A WHERE TO SPEND YOUR EFFORTS WHEN IMPROVING PERFORMANCE)

_ +a££ec¢ed
improved - unat-fFected

speeduP

Example-.
'Suppose a program runs in 100 seconds on a machine, where
muIJriP\iec; are executed 80% of the time. How much do we need to

improve the c;Peed of multiplication it we want the program to run

4 times faster? 25 = 80/r + 20, r = Ibx

How about maoking it 5 times fFaster?
20 = 80/r + 20, r = 27?2
Principle: Focus on making the most common case fast
Amdahl's Law applies equally to H/W and s/Wi

I/14/2.018 Comp 4 - Fall 2018 22

EXAMPLE

Suppose we erhance a machine by making all PIoaJrina—PoinJr instructions run 5
times faster. I the execution time of some benchmark before the
P|oa+ina—Poin+ enhancement is 10 seconds, what will the speedup be it only 50%
ok the I0 seconds is spent executing P|oa+inﬁ—|ooin+ instructions?

G=5/5+5 Relative Perf = 10/6 = 167 %

Marketing is looking for a benchmark to show off the new Hoaﬁha—Poil’ﬁ unit
described dbove, and wants the overall benchmark to show at least a
speedup of 3. What percentage of the execution time would PIoaJrina—PoinJr
instructions have to be to account in order to yield our desired speedup on
this benchmark?

3333 = p/5 + (00 - p) = 100 - 4p/5 p = 8333

1/14-/2.018 Comp 4l - Fall 2018 23

REMEMBER

e When Per'Por'mance is speciF-ic to a particular program
0 Total execution time is a consistent summary of Per?ormance
® For a gven architecture Per'Por'mance comes From:

) ihcreases in clock rate (without adverse CPI afFfects)
2) improvemen’rc; iN processor oraanizaﬁon that lower CPI

3) comPiIer' enhancements that lower CPI and/or instruction count

o Pitfal: Advertized improvements in one aspect of a machine’s
Per?ormance afFfFect the total Per@ormance

® You cant believe everything you read So read careﬁully!

1/14/2.018 Comp 4l - Fall 20186 24

