
11/7/2018 Comp 411 - Fall 2018

Unbounded-Space Computation

1

DURING 1920s & 1930s, much of the
“science” part of computer science
was being developed (long before
actual electronic computers
existed). Many different
“Models of Computation”

were proposed, and the classes of
“functions” that each could compute
were analyzed.

One of these models was the
“TURING MACHINE”,

named after Alan Turing (1912-1954).

Alan Turing

S
1

 A Turing Machine is just an FSM which receives its
inputs and writes outputs onto an “infinite tape”. This
simple addition overcomes the FSM’s limitation that it can
only keep track of a “bounded number of events”.

S
2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

0|1|1|0|0|1|1|1|0|1|0|1|1|1|0|1|1|0

11/7/2018 Comp 411 - Fall 2018

Turing Machine Tapes as Integers

2

Canonical names for bounded tape configurations:

FSM i

0 1 1 00 0 1 0 0

Look, it’s just FSM i
operating on tape j

b8 b6 b4 b2 b0 b1 b3 b5 b7

Note: The FSM part of a Turing Machine is just one of the
FSMs in our enumeration. The tape can also be represented
as an integer, but this is trickier. It is natural to represent it
as a binary fraction, with a binary point just to the left of
the starting position. If the binary number is rational, we can
alternate bits from each side of the binary point until all
that is left is zeros, then we have an integer.

11/7/2018 Comp 411 - Fall 2018

TMs as Integer Functions

3

Turing Machine Ti operating on Tape x,
where x = …b8b7b6b5b4b3b2b1b0

I wonder if a TM can compute
EVERY integer function...

y = T [x]i
x: input tape configuration
y: output tape when TM halts

11/7/2018 Comp 411 - Fall 2018

Alternative Models of Computation

4

Turing Machines [Turing]

FSM i

0 1 1 00 0 1 0 0

Turing

Hardware
head

Lambda calculus [Church, Curry, Rosser...]

λx.λy.xxy

(lambda(x)(lambda(y)(x (x y))))

Church (1903-1995)
Turing’s PhD Advisor

Math
head

Theory
head

Production Systems [Post, Markov]

$0 → []
$ → [$]
$ → $$
$i[]$j → ij

Post
(1897-1954)

Language
head

Recursive Functions [Kleene]

(define (fact n)
 (... (fact (- n 1)) ...)

Kleene (1909-1994)

F(0,x) = x
F(y,0) = y
F(y,x) = x + y + F(y-1,x-1)

11/7/2018 Comp 411 - Fall 2018

The 1
st
 Computer Industry Shakeout

5

Here’s a TM that
computes SQUARE ROOT!

FSM

0 1 1 00 0 1 0 0

11/7/2018 Comp 411 - Fall 2018

And the Battles Raged

6

Here’s a Lambda Expression
that does the same thing...

... and here’s one that computes
the nth root for ANY n!

(λ(x))

(λ(x n))

11/7/2018 Comp 411 - Fall 2018

A Fundamental Result

7

Turing’s amazing proof: Each model is capable of computing
exactly the same set of integer functions! None is more
powerful than the others.

Proof Technique: Constructions that
 translate between

 models

BIG IDEA: Computability, independent of
computation scheme chosen

This means that we know of
no mechanisms (including
computers) that are more
“powerful” than a Turing
Machine, in terms of the

functions they can compute.

Church's Thesis:
Every discrete function computable

by ANY realizable machine is
computable by some Turing machine.

1

11/7/2018 Comp 411 - Fall 2018

Computable Functions

8

Representation tricks: to compute fk(x,y) (2 inputs)
<x,y> ≡ integer whose even bits come from x,

 and whose odd bits come from y; whence

f12345(x,y) = x * y
f23456(x) = 1 iff x is prime, else 0

f(x) computable <=> for some k, all x:
 f(x) = TK[x] fK(x)

fK(x, y) TK[<x, y>]

The “input” to our computable function will be
given on the initial tape, and the “output” will be
the contents of the tape when the TM halts.

11/7/2018 Comp 411 - Fall 2018

TMs, like programs, can misbehave

9

It is possible that a given Turing Machine may not
produce a result for a given input tape. And it may
do so by entering an infinite loop!

Consider the given TM.

It scans a tape looking
for the first non-zero
cell to the right.

What does it do when
given a tape that has
no 1’s to its left?

We say this TM does not
halt for that input!

0|0|0|0|0|0|0|1|0|0 … tape256 = …

… tape8 = … 0|1|0|0|0|0|0|0|0|0

11/7/2018 Comp 411 - Fall 2018

Enumeration of Computable functions

10

Conceptual table of TM behaviors...
 VERTICAL AXIS: Enumeration of TMs.
 HORIZONTAL AXIS: Enumeration of input tapes.
(j ,k) entry = result of TMk[j] -- integer, or * if it never halts.

The Halting Problem: Given j, k: Does TMk Halt with input j?

X1 X1 X0
X1 X0 X1

Turing
Machine
FSMs

Turing Machine Tapes

Every computable
function is in this
table, since everything
that we know how to
compute can be
computed by a TM.

Do there exist
well-specified integer
functions that a TM
can’t compute?

fi(0) fi(1) fi(2) ... fi(j) ...

f0 37 23 *

f1 42 * 666

...

fk fk(j)

...

11/7/2018 Comp 411 - Fall 2018

The Halting Problem

11

The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0
Can a Turing machine compute this function?

k

j
TH

1 iff Tk[j] HALTS
0 otherwise

Suppose, for a moment, TH exists:

Then we can build a TNasty:

TH
?

LOOP

HALT

1

0
k

TNasty[k] LOOP if Tk[k] = 1 (halts)
HALT if Tk[k] = 0 (loops)

If TH is
computable
then so is

TNasty
We only run TH on a
subset of inputs,
those on the
diagonal of the
table given on the
previous slide

11/7/2018 Comp 411 - Fall 2018

What does T
Nasty

[Nasty] do?

Answer:
TNasty[Nasty] loops if TNasty[Nasty] halts
TNasty[Nasty] halts if TNasty[Nasty] loops

That’s a contradiction.
Thus, TH is not computable by a Turing Machine!

Net Result: There are some integer functions that Turing Machines
simply cannot answer. Since, we know of no better model of
computation than a Turing machine, this implies that there are some
well-specified problems that defy computation.

12

2

11/7/2018 Comp 411 - Fall 2018

Limits of Turing Machines

A Turing machine is formal abstraction that addresses
• Fundamental Limits of Computability –

What is means to compute.
The existence of uncomputable functions.

• We know of no machine more powerful than a Turing machine
 in terms of the functions that it can compute.

But they ignore
• Practical coding of programs
• Performance
• Implementability
• Programmability

... these latter issues are the primary focus of contemporary
 computer science (Remainder of Comp 411)

13

11/7/2018 Comp 411 - Fall 2018

Computability vs. Programmability

Recall Church’s thesis:

 “Any discrete function computable by
ANY realizable machine is computable
by some Turing Machine”
We’ve defined what it means to COMPUTE
(whatever a TM can compute), but, a
Turing machine is nothing more that an FSM
that receives inputs from, and outputs
onto, an infinite tape.

So far, we’ve been designing a new FSM
for each new Turing machine that we
encounter.

Wouldn’t it be nice if we could design a
more general-purpose Turing machine?

14

FSM

0 1 1 00 0 1 0 0

Sorting

FSM

0 1 1 00 0 1 0 0

Multiplication

FSM

0 1 1 00 0 1 0 0

Factorization

FSM

0 1 1 00 0 1 0 0

Is it prime?

11/7/2018 Comp 411 - Fall 2018

Programs as Data

15

What if we encoded the description of the FSM on our tape, and
then wrote a general purpose FSM to read the tape and EMULATE
the behavior of the encoded machine? We could just store the
state-transition table for our TM on the tape and then design a new
TM that makes reference to it as often as it likes. It seems
possible that such a machine could be built.

M

x
UTM[x]

"It is possible to invent a single machine
which can be used to compute any
computable sequence. If this machine U is
supplied with a tape on the beginning of
which is written the S.D ["standard
description" of an action table] of some
computing machine M, then U will compute
the same sequence as M.”
- Turing 1936 (Proc of the London
Mathematical Society, Ser. 2, Vol. 42)

3

11/7/2018 Comp 411 - Fall 2018

Fundamental Result: Universality

16

Define "Universal Function“: U(x,y) = TX(y) for every x, y …
Surprise! U(x,y) IS COMPUTABLE,
hence U(x,y) = TU(<x,y>) for some U.

Universal Turing Machine (UTM):

TM = "program"
tape = "data"

"interpreter"
 PARADIGM for General-Purpose Computer!

TU [<y, z>] = TY[z]

INFINITELY many UTMs ...
 Any one of them can
 evaluate any computable
 function by simulating/
 emulating/interpreting
 the actions of Turing
 machine given to it
 as an input.

UNIVERSALITY:
 Basic requirement
 for a general purpose
 computer

11/7/2018 Comp 411 - Fall 2018

Demonstrating Universality

17

Suppose you've designed Turing Machine TK and want to show that its universal.

APPROACH:
1. Find some known universal machine, say TU.
2. Devise a program, P, to simulate TU on TK:
TK[<P,x>] = TU[x] for all x.
3. Since TU[<y,z>] = TY[z], it follows that, for all y and z.

CONCLUSION: Armed with program P, machine TK can mimic the
behavior of an arbitrary machine TY operating on an arbitrary input
tape z.

HENCE TK can compute any function that can be computed by any
Turing Machine.

TK [<P,<y,z>>] = TU[<y,z>] =
TY[z]

Turing
Complete

11/7/2018 Comp 411 - Fall 2018

Next Time

Enough theory already, let’s build something!

18

11/7/2018 Comp 411 - Fall 2018

Building a Computer

19

I wonder where
this goes?

Instru
ctio

n

Memor

y
A

D

0 1
ARM Kit

ALU

A

B

● Problem Set #3
is due on
Wednesday.

11/7/2018 Comp 411 - Fall 2018

Other Functional Units

We’ll need a few more functional units. We begin by adding an “enable”
input to a standard flip-flop. With those we will build “wide” registers
(i.e. registers with shared clocks and enables).

20

 D

 Q
EN

 D

 Q
EN

 D

 Q
EN

 D

 Q
EN

 D

 Q
EN…

Q

 D
 Q

 1 0
 S

D

EN

CLK

D
Q

EN

 An N-bit wide
Register with enable

EN D CLK QN QN+1

X X 0 0 0

X X 0 1 1

X X 1 0 0

X X 1 1 1

0 X ↑ 0 0

0 X ↑ 1 1

1 0 ↑ X 0

1 1 ↑ X 1

11/7/2018 Comp 411 - Fall 2018

A Register File

We can also construct an addressable array of registers

21

D
Q

EN D
Q

EN D
Q

EN…

…
0 1 2N-1Read Addr[N:0]

Write Addr[N:0] 0 1 … 2N-1

Data in[B:0]

Data out[B:0]

Write Enable

Clk

WA[N:0]
RA[N:0]
WE

Dout[B:0]

Din[B:0]

11/7/2018 Comp 411 - Fall 2018

A Multi-Ported Register File

We can add multiple read ports by simply adding more output MUXs

22

D
Q

EN D
Q

EN D
Q

EN…

0 1 2N-1Read
Addr

A[N:0]

Write Addr[N:0] 0 1 … 2N-1

Write Data[B:0]

Data
out

A[B:0]

Write Enable

Clk

0 1 2N-1Read
Addr

B[N:0]

Data
Out

B[B:0]

…
0 1 2N-1Read

Addr
C[N:0]

Data
Out

C[B:0]

… …
WA[N:0]
RA[N:0]

WE

DA[B:0]

WD[B:0]

DB[B:0]

RB[N:0]

DC[B:0]

RC[N:0]

11/7/2018 Comp 411 - Fall 2018

This is it!

This is where our story actually
begins. We are now ready to
build a computer.

The ingredients are all in place. It
is time to build a legitimate
computer. One that executes
instructions, much the way any
desktop, tablet, smartphone, or
other computer does.

23

11/7/2018 Comp 411 - Fall 2018

The ARM7 ISA

24

000 Opcode S RnCond Rd Shift RmR type:

4 3 4 1 4 4 5 2 1 4
L
A

0

001 Opcode S RnCond Rd ImmShiftI type:

4 3 4 1 4 4 4 8

010 RnCond Rd Imm12D type:

4 3 5 4 4 12

AddrMode

011 RnCond RdX type:

4 3 5 4 4 5 2 1 4

AddrMode Shift RmL
A

0

101 LCond Imm24B type:

4 3 1 24

Five key instruction formats: 0) ALU with two register operands
1) ALU with a register and an immediate operand
2) Load/Store with an immediate offset
3) Load/Store with a register offset
5) Branch

11/7/2018 Comp 411 - Fall 2018

Design Approach

Incremental Featurism:

25

Each instruction class can be implemented using our component
repertoire. We’ll try implementing data paths for each class
individually, and merge them as we go (using MUXes, etc).

Steps:
1. 3-Operand ALU instructions
2. ALU w/immediate instructions
2. Load & Store Instructions
3. Branch instructions
4. Leftovers
5. Reset & Exceptions

Our bag of parts:

Registers

0 1 Muxes

ALU
A B ALU & adders

Data
Memory

WD

A

RD

R/W

Register
File

(3-port)

RA1 RA2

WA

WE

WD

RD1 RD2

Instruction
Memory

A

D

Memories

+

11/7/2018 Comp 411 - Fall 2018

Instruction Fetch/Decode

● Fetch an instruction, and decode it

26

PC

+4

Instruction
Memory

Addr

Data

Can be built
using only

half-adders

Cond
format

opcode,S
Rn

Rd
Rm

32

4 3 5 4 4 4

● use PC as memory address
● add 4 to current PC,

and update PC on the next
rising clock

● fetch instruction from memory
○ We’ll use some instruction

fields directly
(register numbers, constants)

○ use format, opcode bits, and a
few assorted bits to generate
controls

A B

C S
FA

A B

C S
FA

A B

C S
FA

A B

C S
FA ...

PC31 PC4 PC3 PC2”1”

11/7/2018 Comp 411 - Fall 2018

R-type Data Processing

ALU instructions with register operands

Rd - register file write address
Rn, Rm - register source operands
Shift or Rs - Optional shift of Rm

LA - direction and type of shift

S-bit - controls update of PSR

Func decoding from ALU lecture

Register write back controlled
by WERF logic

27

0000 - AND
0001 - EOR
0010 - SUB
0011 - RSB
0100 - ADD
0101 - ADC
0110 - SBC
0111 - RSC
1000 - TST
1001 - TEQ
1010 - CMP
1011 - CMN
1100 - ORR
1101 - MOV
1110 - BIC
1111 - MVN

PC

+4

Instruction
Memory

Addr

Data
32

4-port
Register file

 RA RB RC

 WA
 WD
 WE
 DA DB DC

ALU

Rd[15:12]

Rn[19:16]
Rm[3:0]
Rs[11:8]

EN

 A B Shft
Rot/Asr/Rgt
 Sub/Rsb
 Math
 N,Z,C,V R

Func
dec

Shift[11:7]

Opcode[24:21]

LA[6:5]

WERF
dec

Cond[31:28]
PSR

PSR

S[20]

 0 1[4]

Opcode[24:23]

WERF!

11/7/2018 Comp 411 - Fall 2018

Next Time

More instructions...

28

11/7/2018 Comp 411 - Fall 2018

WERF logic

Not every instruction
updates a destination
register

CMP, CMN, TST, TEQ
don’t update any
register

Conditional execution is
controlled by the
WERF logic. WE is set
only if the condition is
met. Otherwise it is
effectively annulled..

29

I31 I30 I29 I28 I24 I23 WE Notes

X X X X 1 0 0 cmp,cmn,tst,teq

1 1 1 0 0 X 1 Cond = AL

1 1 1 0 X 1 1 Cond = AL

0 0 0 0 0 X Z Cond = EQ

0 0 0 0 X 1 Z Cond = EQ

0 0 0 1 0 X !Z Cond = NE

0 0 0 1 X 1 !Z Cond = NE

...

1 1 0 0 0 X !(Z | (N^V)) Cond = GT

1 1 0 0 X 1 !(Z | (N^V)) Cond = GT

1 1 0 1 0 X Z | (N^V) Cond = LE

1 1 0 1 X 1 Z | (N^V) Cond = LE

