
11/7/2018 Comp 411 - Fall 2018 

Unbounded-Space Computation
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DURING 1920s & 1930s, much of the 
“science” part of computer science 
was being developed (long before 
actual electronic computers 
existed). Many different 
“Models of Computation”

were proposed, and the classes of 
“functions” that each could compute 
were analyzed.

One of these models was the 
“TURING MACHINE”, 

named after Alan Turing (1912-1954).

Alan Turing

S
1

     A Turing Machine is just an FSM which receives its 
inputs and writes outputs onto an “infinite tape”. This 
simple addition overcomes the FSM’s limitation that it can 
only keep track of a “bounded number of events”.

S
2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

0|1|1|0|0|1|1|1|0|1|0|1|1|1|0|1|1|0
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Turing Machine Tapes as Integers
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Canonical names for bounded tape configurations:

FSM  i

0 1 1 00 0 1 0 0

Look, it’s just FSM i
operating on tape j

b8    b6    b4   b2    b0    b1   b3    b5    b7  

Note: The FSM part of a Turing Machine is just one of the 
FSMs in our enumeration. The tape can also be represented 
as an integer, but this is trickier. It is natural to represent it 
as a binary fraction, with a binary point just to the left of 
the starting position. If the binary number is rational, we can 
alternate bits from each side of the binary point until all 
that is left is zeros, then we have an integer.
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TMs as Integer Functions
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Turing Machine Ti operating on Tape x,
where x = …b8b7b6b5b4b3b2b1b0

I wonder if a TM can compute
EVERY integer function...

y   =   T [x]i
x:  input tape configuration 
y: output tape when TM halts
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Alternative Models of Computation
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Turing Machines [Turing]

FSM i

0 1 1 00 0 1 0 0

Turing

Hardware
head

Lambda calculus [Church, Curry, Rosser...]

λx.λy.xxy

(lambda(x)(lambda(y)(x (x y))))

Church (1903-1995)
Turing’s PhD Advisor

Math
head

Theory
head

Production Systems [Post, Markov]

  
$0 → []
$ → [$]
$ → $$
$i[]$j → $i$j

Post
(1897-1954)

Language
head

Recursive Functions [Kleene]

(define (fact n)
      (... (fact (- n 1)) ...)

Kleene (1909-1994)

F(0,x) = x
F(y,0) = y
F(y,x) = x + y + F(y-1,x-1)
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The 1
st
 Computer Industry Shakeout
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Here’s a TM that
computes SQUARE ROOT!

FSM

0 1 1 00 0 1 0 0
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And the Battles Raged
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Here’s a Lambda Expression
that does the same thing...

... and here’s one that computes
the nth root for ANY n!

(λ(x) .....)

(λ(x n) .....)
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A Fundamental Result
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Turing’s amazing proof: Each model is capable of computing 
exactly the same set of integer functions! None is more 
powerful than the others.

Proof Technique: Constructions that
         translate between

 models

BIG IDEA: Computability, independent of
computation scheme chosen

This means that we know of 
no mechanisms (including 
computers) that are more 
“powerful” than a Turing 
Machine, in terms of the 

functions they can compute.

Church's Thesis:
Every discrete function computable

by ANY realizable machine is
computable by some Turing machine.

1
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Computable Functions
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Representation tricks: to compute fk(x,y) (2 inputs)
<x,y> ≡ integer whose even  bits come from x, 

      and whose odd  bits come from y; whence

f12345(x,y) = x * y
f23456(x) = 1 iff x is prime, else 0

f(x) computable <=> for some k, all x:
              f(x) = TK[x]      fK(x)

fK(x, y)   TK[<x, y>]

The “input” to our computable function will be 
given on the initial tape, and the “output” will be 
the contents of the tape when the TM halts.
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TMs, like programs, can misbehave
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It is possible that a given Turing Machine may not 
produce a result for a given input tape. And it may 
do so by entering an infinite loop!

Consider the given TM.

It scans a tape looking 
for the first non-zero 
cell to the right.

What does it do when
given a tape that has
no 1’s to its left?

We say this TM does not 
halt for that input!

0|0|0|0|0|0|0|1|0|0 … tape256 = …

… tape8 = … 0|1|0|0|0|0|0|0|0|0
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Enumeration of Computable functions
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Conceptual table of TM behaviors... 
   VERTICAL AXIS: Enumeration of TMs.
   HORIZONTAL AXIS: Enumeration of input tapes.
(j ,k) entry = result of TMk[j] -- integer, or * if it never halts.

The Halting Problem: Given j, k: Does TMk Halt with input j?

X1  X1  X0 
X1  X0  X1

Turing
Machine
FSMs

Turing Machine Tapes

Every computable 
function is in this 
table, since everything 
that we know how to 
compute can be 
computed by a TM.

Do there exist 
well-specified integer 
functions that a TM 
can’t compute?

fi(0) fi(1) fi(2) ... fi(j) ...

f0 37 23 * ... ...

f1 42 * 666 ... ...

... ... ... ... ... ...

fk ... ... ... ... fk(j)

...
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The Halting Problem
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The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0
Can a Turing machine compute this function?

k

j
TH

1 iff Tk[j] HALTS
0 otherwise

Suppose, for a moment, TH  exists:

Then we can build a TNasty:

TH
?

LOOP

HALT

1

0
k

TNasty[k] LOOP if Tk[k] = 1 (halts)
HALT if Tk[k] = 0 (loops)

If TH is
computable
then so is 

TNasty
We only run TH on a 
subset of inputs, 
those on the 
diagonal of the  
table given on the 
previous slide
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What does T
Nasty 

[Nasty] do?

Answer: 
TNasty[Nasty] loops if TNasty[Nasty] halts
TNasty[Nasty] halts if TNasty[Nasty] loops

That’s a contradiction. 
Thus, TH is not computable by a Turing Machine!

Net Result: There are some integer functions that Turing Machines 
simply cannot answer. Since, we know of no better model of 
computation than a Turing machine, this implies that there are some 
well-specified problems that defy computation.

12

2
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Limits of Turing Machines

A Turing machine is formal abstraction that addresses
•   Fundamental Limits of Computability –

What is means to compute.
The existence of uncomputable functions.

•   We know of no machine more powerful than a Turing machine
        in terms of the functions that it can compute. 

But they ignore
• Practical coding of programs
• Performance
• Implementability
• Programmability

... these latter issues are the primary focus of contemporary
  computer science  (Remainder of Comp 411)

13
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Computability vs. Programmability

Recall Church’s thesis:

 “Any discrete function computable by 
ANY realizable machine is computable 
by some Turing Machine”
We’ve defined what it means to COMPUTE 
(whatever a TM can compute), but, a 
Turing machine is nothing more that an FSM 
that receives inputs from, and outputs 
onto, an infinite tape.

So far, we’ve been designing a new FSM 
for each new Turing machine that we 
encounter.

Wouldn’t it be nice if we could design a 
more general-purpose Turing machine?

14

FSM

0 1 1 00 0 1 0 0

Sorting

FSM

0 1 1 00 0 1 0 0

Multiplication

FSM

0 1 1 00 0 1 0 0

Factorization

FSM

0 1 1 00 0 1 0 0

Is it prime?
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Programs as Data
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What if we encoded the description of the FSM on our tape, and
then wrote a general purpose FSM to read the tape and EMULATE
the behavior of the encoded machine? We could just store the 
state-transition table for our TM on the tape and then design a new 
TM that makes reference to it as often as it likes. It seems 
possible that such a machine could be built.

M

x
UTM[x]

"It is possible to invent a single machine 
which can be used to compute any 
computable sequence. If this machine U is 
supplied with a tape on the beginning of 
which is written the S.D ["standard 
description" of an action table] of some 
computing machine M, then U will compute 
the same sequence as M.”
- Turing 1936 (Proc of the London 
Mathematical Society, Ser. 2, Vol. 42)

3
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Fundamental Result: Universality
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Define "Universal Function“: U(x,y) = TX(y) for every x, y …
Surprise! U(x,y) IS COMPUTABLE,
hence U(x,y) = TU(<x,y>) for some U.

Universal Turing Machine (UTM):

TM = "program"
tape = "data"

"interpreter"
   PARADIGM  for General-Purpose Computer!

TU [<y,  z>] = TY[z]

INFINITELY many UTMs ... 
   Any one of them can
   evaluate any computable
   function by simulating/
   emulating/interpreting
   the actions of Turing
   machine given to it
   as an input.

UNIVERSALITY:
   Basic requirement
   for a general purpose
   computer
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Demonstrating Universality
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Suppose you've designed Turing Machine TK and want to show that its universal.

APPROACH:
1. Find some known universal machine, say TU.
2. Devise a program, P, to simulate TU on TK:
TK[<P,x>] = TU[x] for all x.
3. Since TU[<y,z>] = TY[z], it follows that, for all y and z.

CONCLUSION:  Armed with program P, machine TK can mimic the 
behavior of an arbitrary machine TY operating on an arbitrary input 
tape z.

HENCE TK can compute any function that can be computed by any 
Turing Machine.

TK [<P,<y,z>>]  =  TU[<y,z>]  =  
TY[z]

Turing 
Complete
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Next Time

Enough theory already, let’s build something!

18
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Building a Computer
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I wonder where
this goes?

Instru
ctio

n

Memor

y
A

D

0 1
ARM Kit

ALU

A

B

● Problem Set #3 
is due on 
Wednesday.
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Other Functional Units

We’ll need a few more functional units. We begin by adding an “enable” 
input to a standard flip-flop. With those we will build “wide” registers 
(i.e. registers with shared clocks and enables).

20

    D

    Q
EN

    D

    Q
EN

    D

    Q
EN

    D

    Q
EN

    D

    Q
EN…

Q

 D
 Q

  1      0
   S      

D

EN

CLK

D
Q

EN

 An N-bit wide 
Register with enable

EN D CLK QN QN+1

X X 0 0 0

X X 0 1 1

X X 1 0 0

X X 1 1 1

0 X ↑ 0 0

0 X ↑ 1 1

1 0 ↑ X 0

1 1 ↑ X 1
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A Register File

We can also construct an addressable array of registers

21

D
Q

EN D
Q

EN D
Q

EN…

…
0     1        2N-1Read Addr[N:0]

Write Addr[N:0] 0  1   …   2N-1

Data in[B:0]

Data out[B:0]

Write Enable

Clk

WA[N:0]
RA[N:0]
WE

Dout[B:0]

Din[B:0]
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A Multi-Ported Register File

We can add multiple read ports by simply adding more output MUXs

22

D
Q

EN D
Q

EN D
Q

EN…

0     1        2N-1Read 
Addr 

A[N:0]

Write Addr[N:0] 0  1    …   2N-1

Write Data[B:0]

Data 
out 

A[B:0]

Write Enable

Clk

0     1        2N-1Read 
Addr 

B[N:0]

Data
Out

B[B:0]

…
0     1        2N-1Read 

Addr 
C[N:0]

Data
Out

C[B:0]

… …
WA[N:0]
RA[N:0]

WE

DA[B:0]

WD[B:0]

DB[B:0]

RB[N:0]

DC[B:0]

RC[N:0]
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This is it!

This is where our story actually 
begins. We are now ready to 
build a computer.

The ingredients are all in place. It 
is time to build a legitimate  
computer. One that executes 
instructions, much the way any 
desktop, tablet, smartphone, or 
other computer does.

23
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The ARM7 ISA
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000 Opcode S RnCond Rd Shift RmR type:

4             3            4          1         4               4              5      2  1         4
L
A

0

001 Opcode S RnCond Rd ImmShiftI type:

4             3            4          1         4               4              4               8

010 RnCond Rd Imm12D type:

4             3                5                 4               4                          12

AddrMode

011 RnCond RdX type:

4             3                5                 4               4             5      2   1         4

AddrMode Shift RmL
A

0

101 LCond Imm24B  type:

4             3        1                                              24

Five key instruction formats: 0) ALU with two register operands
1 ) ALU with a register and an immediate operand    
2) Load/Store with an immediate offset
3) Load/Store with a register offset
5) Branch
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Design Approach

Incremental Featurism:

25

Each instruction class can be implemented using our component 
repertoire.  We’ll try implementing data paths for each class 
individually, and merge them as we go (using MUXes, etc).

Steps:
1. 3-Operand ALU instructions
2. ALU w/immediate instructions
2. Load & Store Instructions
3. Branch instructions
4. Leftovers
5. Reset & Exceptions

Our bag of parts:

Registers

0 1 Muxes

ALU
A B ALU & adders

Data
Memory

WD

A

RD

R/W

Register
File

(3-port)

RA1 RA2

WA

WE

WD

RD1 RD2

Instruction
Memory

A

D

Memories

+
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Instruction Fetch/Decode

● Fetch an instruction, and decode it

26

PC

+4

Instruction
Memory

Addr

Data

Can be built
using only 

half-adders 

Cond
format

opcode,S
Rn

Rd
Rm

32

4 3 5 4 4 4

● use PC as memory address
● add 4 to current PC, 

and update PC on the next 
rising clock

● fetch instruction from memory
○ We’ll use some instruction 

fields directly 
(register numbers, constants)

○ use format, opcode bits, and a 
few assorted bits to generate 
controls

A   B

C   S
FA

A   B

C   S
FA

A   B

C   S
FA

A   B

C   S
FA ...

PC31                     PC4              PC3             PC2”1”
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R-type Data Processing

ALU instructions with register operands

Rd - register file write address
Rn, Rm - register source operands
Shift or Rs - Optional shift of Rm

LA - direction and type of shift

S-bit - controls update of PSR

Func decoding from ALU lecture

Register write back controlled 
by WERF logic

27

0000 - AND
0001 - EOR
0010 - SUB
0011 - RSB
0100 - ADD
0101 - ADC
0110 - SBC
0111 - RSC
1000 - TST
1001 - TEQ
1010 - CMP
1011 - CMN
1100 - ORR
1101 - MOV
1110 - BIC
1111 - MVN

PC

+4

Instruction
Memory

Addr

Data
32

4-port 
Register file

        RA             RB              RC

  WA 
                                                  WD
  WE
        DA                       DB     DC

ALU

Rd[15:12]

Rn[19:16]
Rm[3:0]
Rs[11:8]

EN

          A                                    B     Shft
Rot/Asr/Rgt
    Sub/Rsb
        Math
             N,Z,C,V       R

Func
dec

Shift[11:7]

Opcode[24:21]

LA[6:5]

WERF
dec

Cond[31:28]
PSR

PSR

S[20]

    0      1[4]

Opcode[24:23]

WERF!
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Next Time

More instructions...

28
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WERF logic

Not every instruction 
updates a destination 
register

CMP, CMN, TST, TEQ 
don’t update any 
register

Conditional execution is 
controlled by the 
WERF logic. WE is set 
only if the condition is 
met. Otherwise it is 
effectively annulled..  

29

I31 I30 I29 I28 I24 I23 WE Notes

X X X X 1 0 0 cmp,cmn,tst,teq

1 1 1 0 0 X 1 Cond = AL

1 1 1 0 X 1 1 Cond = AL

0 0 0 0 0 X Z Cond = EQ

0 0 0 0 X 1 Z Cond = EQ

0 0 0 1 0 X !Z Cond = NE

0 0 0 1 X 1 !Z Cond = NE

... ... ... ... ... ... ...

1 1 0 0 0 X !(Z | (N^V)) Cond = GT

1 1 0 0 X 1 !(Z | (N^V)) Cond = GT

1 1 0 1 0 X Z | (N^V) Cond = LE

1 1 0 1 X 1 Z | (N^V) Cond = LE


