P

DESIGNING SEQUENTIAL LosIC [L]

—
Sequential logic is used when the solution to some cleeign
problem involves a sequence of steps:

How to open diai+a| combination lock. w/ 3 buttons (‘start’, ‘0" and)

Step | press ‘start' button .
Step 2: press ‘0" button InFormation
" button / remembered between

Step 3: press _
Step 4: press % button steps is qalled state.
Step 5: press ‘0" button Might be just what

step we're on, or
might include results
from earlier steps
we'll need to complete
a later step.

/5 /2018 Comp 41 - Fall 2018

IMPLEMENTING A "STATE MACKHINE"

Current State “start” “1” “0” | Next State unlock
This Navor of --- 1 = - start 0 000
“Yuth-table' is start 000 0 0 1 |digit1 0 001
caled a start 000 0 1 O |error 0 101
'state-transition start 000 0 0 0 |start 0 000
table digitt 001 0 1 0 |digit2 0 010
digit1 001 0 O 1 |Jerror 0 101
digit1 001 0 O 0 |digit1 0 001
S digit2 010 0 1 0 |digit3 0 011
mkM"ke"\ digit3 011 0 0 1 |unlock 0 100
unlock 100 0 1 0 |Jerror 1 101
unlock 100 0 0 1 Jerror 1 101
unlock 100 0 0 O Junlock 1 100
error 101 0 --—- ---lerror 0 101

6 different states — encode using 3 bits

/5 /2018 Comp 41 - Fall 2018

Now, WEe Do IT WITH HARDWARE!

6 inputs —2° locations

“start” button —»

“0” button —¥

“1” button —

>

Current state

ROM

64x4

each location supplies 4 bits

—» unlock

Next state

3

QD |

Trigger update periodically (“clock”)

/s /2018

Comp 41 - Fall 208

ABSTRACTION DV TOVR:

A FINITE STATE MACHINE

/s /2018

m

—4* Clocked 0
— > FSM

/A Finite State Machine has:

e m inputs I1, I2, Im

e noutputs O,, 0, ... O

e Transition Rules, S'(S,1., 1, ... |)
for each state and input comblnatlon

! Output Rules, O(S)) for each state

e kStates S,,S,,... S, (oneis the “initial” state)

~

WV

Comp 41 - Fall 208

DISCRETE STATE, DISCRETE TIME

K While a ROM is shown here

@ in the feedback path any
form of combinational logic
inputs — —>outputs :meuseﬂ-}oconsi'mda
\ machine.
ROM Two desigh choices:
() outputs *onlyt depend on state (Moore)
STATE NEXT (1) outputs depend on inputs + state (Mealy)
S S
I \
A s state bits — 2° possible states
Clock)V _V _V _V _V _V
STAT ¥ X X X X X
E
NEXT XXXO00COUXXXXX 0NN 000N X
Clock Clock Clock Clock Clock
Period Period Period Period Period
1 2 3 4 5
I/5 /2018

Comp 41 - Fall 2018

STATE TRANSITION DIAGRAMS

A state transition aﬁagram is
g /an dbstract 'graph'
representation of a

‘state transition table’,
where each state is
represented as a node

and each transition is
represented as a as an arc.
It represents the machine’s
behavior not its

0,1

implementatior!
Heavy circle means
INITIAL state
0,15 NaME /
of
state
%= no buttons 0
ressed \
P OUTPUT when INPUT
:) or INPUTs
in this state in
(Moore) causing
transition

/5 /2018 Comp 4l - Fall 2018 G

EXAMPLE STATE DIAGRAMS

1 0
MOOCRE Machine:
@ 1 @ 0 @ 1 Cutputs on States
11 0/0
@ @ /\ MEALY Machine:
@ 110 e
1/0 0/0 OU+PU+§ oh Tranhsttions

Arcs leaving a state must be:
() mutually exclusive
can only have one choice for any given input value
(2) collectively exhaustive

every state must speciPy what happens For each possible
input combination ‘No-lhlhg happens" means arc back to iteelf

/5 /2018 Comp 41 - Fall 208

—

NEXT TIME

CounJrinﬁ state machines

/5 /2018 Comp 41 - Fall 2018

FOMS AND TURING MACHINES

V\/ays we know to compute
o Truth-tables = combinational Ioaic
0 State-transition tables = sequential loaic

Enumera’rinﬂ FSMs
Church (1903-1995)
An even more PowerPuI model: Turing's PhD Advisor

a "Tur‘ir\a Machine'
What does it mean to compute? (?'9“1";1‘5?2)
What can’t be comPqued

|

universal TMs Proar'ammalale ™™

Kleene
(1909-1994)

Post
(1897-1954)

/5 /2018 Comp 4l - Fall 2018 9

LET'S PLAY STATE MACHINE

Le¥s emulate the behavior speci-Pied by the state machine
shown below when processing the Pollowing string from

LSB to MsB. 1 0
SONORGE
1 0
39, = 0100111,
State Input |Next Output T4 loocks to me like this
T=0 S0 1 [S1 0 e e
=1 $1 1 |SO0 1 that it has seen thus far
T=2 SO 1 S1 0 is a muHiple of 3.
T=3 $1 0 |S2 O (Wow, and FSM can
T=4 S2 0 (S1 O divide by 3))
T=5 $S1 1 1S0 1
T=6 SO 0O |SO 1

/5 /2018 Comp 41 - Fall 208

F5M PARTY GAMES

. What can you say about
the humber of states?

States < 2F

2. Same quesﬁon-.

/s /2018

States S m x n

Comp 4 -

ROM

| FSM,

m-states

Y| Fsm,

n-states

Fall 2018

2-TYPES OF PROCESSING ELEMENTS

Combinational Loaic: i
Table |oo|<—up, ROM 7

Recall that there are precisely

Addr
Data

o

ﬁL)

|
22, Hnput combinational Functions.
A single ROM can store ‘o of them

Finite State Machines:

i
ROM with State Memory ~ —7—

s
Thus Far, we know of hothing ‘74"

Addr
Data

more Power'FuI +than an FSM

/5 /2018 Comp 41 - Fall 2018

Fundamentally,
everything
that we've

learned so far
can be done
with a ROM

and registers

"

FOMS AS PROGRAMMABLE MACHINES

ROM-based FSM sketch: An FSM's behavior is completely 77
Given | 5, and o, we need a ROM deterrrined by its ROM contents.
orgahized as: input outputs
2% words x (o+s) bits i sy | Sy O
. 0..00 | 0..00 | 10110 | 011
So how many possible 001
Hhput,)
o-output, ' i+s
/ 2
FSMs with / >}+>
s-state bits
eXI9+? The number of "bi}s” S
in +he ROM //’
All possible i+s A\
cebtinas of Hhe 0+s)2
s {2 0*9) T
fo:lor 0 I o
(some rr;ay*I;e - \ﬁL’
, equivalen " "
9" How many shate machings are here with Recall ho:N we were able to ‘enumerate
I-input, I-output, and | state bH? or ‘name’ every Z—inf..ﬂ- gate?
2(1+1)4 = 28 = 256 Can we do the same for FsMs?

/5 /2018 Comp 41 - Fall 2018

These are the FSMs with | input. _‘ —

FSM ENVMERATION R

GOAL.: List all Possible FSMs in
some canonhical order.

- INFINITE list, but

. Every FSM has an en+r'y g

aond an associoted index.

input outputs

iS s 0 s

N N+1

0...00 0...00 10110 | 011
0...01

i s o FSM# Truth Table ¥
111 1 oooooooo'figi
111 2 00000001

- 28
111 256 11111111] | FSMs
222 257 000000..000000

2 2 2 258 000000..000001 |264

18,446,744,073,709,551 ,87%._

333

000000..000000
3.9402 x 10115,
444 \ 000000 000000

Every possible FSM can be associated with a unique number.
This requires a few wasteful simpliFications. First, given an
iHnput, s-state-bit, and o-output FSM, we'll replace it with its
equivalent n-input, nstate-bit and n-output FSM, where n is the
greatest of | 5, and o. We can always ignore the extra
input-bits, and set the exira output bits to 0. This dllows us to
discuss the ith FsM

/5 /2018 Comp 4l - Fall 20186 14

SOME FAVORITES

FSM
FSM
FSM
FSM
FSM22698469884
FSM

FSM

FS M78436378390

837
1077
1537
89143

23892749274
78436378389

/s /2018

modulo 3 state machine

4-bit counter

Combination lock

Cheap digital watch

MIPs processor

ARMY7 processor

Intel I-7 processor (Skylake)
Intel I-7 processor (Kaby lake)

1"”

(!

Comp 41 - Fall 208

CAN FSMs COMPVUTE EVERY BINARY FUNCTION?
NoPe!

There exist many simple problems that cannot be compu+ed Iay FSMs.
For instance:

Checking For baanced parentheses

(OO0 - okay . /i%::":ff’%@%?:
(()())) - NO aood! P Y9

series of inputs, starting
from a known initial state.

PROBLEM: Requires ARBITRARILY many states, oleper\olinﬂ on input.
Must "'COUNT" unmaotched LEFT parens.

But, an FSM can only keep track oF a 'bounded' humber of events.
(Bounded by its number oE states)

Is there another Form of logic that can solve this problem?

/5 /2018 Comp 41l - Fall 2018 &

VNBOVNDED-SPACE COMPUTATION

DURING 19205 & 19305, much of the
‘science’ part of computer science

was being developed (long before
C011[1/0[0[1]1110]1011111110111110¢ actual eléctronic computers

existed). Many diFferent
‘Models of Zompui'aﬁon'
ouR were proposed, and the classes of
LoD ‘functions’ that each could compute
oTH were analyzed.

One of these models was the
‘TURING MACHINE",
hamed after Alan Tur'ina (91295 4).

A Turing Machine is just an FSM which receives its
. inputs and writes outputs onto an “infinite tape’. This
Alan Turing simple addition overcomes the FSM's limitation that i can
only keep track of a "bounded number of events'

/5 /2018 Comp 41 - Fall 208

A TURING MACHINE EXAMPLE

- In+inite +aPe
- Discrete eymlaol positions
- Finite alphabet - say {O, 1}
- Control FsM
INPUT S:
Current Gymbol on tape
OUTPUTS:
write O/
move tape Lelt or Right
- Initial Starting State {s0
. Halt state {Holt)

/5 /2018 Comp 41 - Fall 208

Turnlﬁ Machine SPeciPica+im A Turing machine, like an FSM, can be

speciﬁied via a state-transition table.
The Po\lowina Turing Moachine implements
a unary (base 1) counter

Current | Tape [[Write Next
State |[Input| Tape | Move | State

SO 1 1 R SO

SO 0] 1 L S1
S1 1 1 L S1
S1 0 0] R | Halt

.{olololo]1]1]1]1]1]0 |-

toafet

TURING MACHINE TAPES AS TNTEGERS

Canonhical names for bounded tape conPigumﬁons:

b, b, b, b, b, b, b, b, b,

olo|1]|ojo|1|1]0|0]| |

Look, it's just FSM i
operating on tape j

Note: The FSM part of a Turing Machine is just one of the
FSMs in our enumeration The tape can also be represerﬁed
as an in+eger, but this is trickier. It is natural to represent it
as a binary Fraction, with a binary point just to the lef+ of
the starting position. I +he binary number is rational, we can
aternate bits From each side of the binary point until all
that is left is zeros, then we have an integer.

/5 /2018 Comp 41 - Fall 2018

TMs AS INTEGER FUNCTIONS

/s /2018

Tur'ir\a Machine T operaﬁn@ on Tape X,
where x = ...I08|a719 b b bbbb

G 5 4 3 21 O

y = T.[x]

X: inPu+ JraPe cor\lliaur'aﬁon
y: ou+Pu+ +aPe wherl TM halts

Comp 41 - Fall 2018

I wonder if a TM can compute
— EVERY integer function..

20

ALTERNATIVE MODELS OF CGMPUTAT?GM

Turing Machines [Turing] Hardware Recursive Functions [Kleene
head

F(0,x) = x oy head

ﬂ_O_LOJ_‘LLO%J_u_I_QLO_LI F(y,0) =y
F(y,x) =x+y+ F(y-1,x-1)
FSM; (define (fact n)
(... (fact (- n 1)) ...)
Kleene (1909-1994)
Turing Production Systems [Post, Markov]
Lambda calculus [Church, Curry, Rosser...] Laﬂg:jse
(¢5 = Mdth S, — [1]
d‘ head AX. 7‘“y XXY $0_’ [$]
_ $ - S8
‘> (lambda (x) (lambda (y) (x (x y)))) S [18, - 8,8,
Post

Church (1903-1995) (1897-1954)

Turing's PhD Advisor

/5 /2018 cprlm«-Fmizma 2

—~—
THE)™ ComMPUTER TNDUSTRY szsouﬂl]l_

Here's a TM that
computes SQUARE ROOT!

\

Jjojoftjojoftjtiopf)

il

FSM

/5 /2018 ComP 4 - Fall 2018 22

AND THE BATTLES RAGED

Here's a Lambda Expression
that does the same thing...

. and here's one that computes
the n™ root for ANY nl

(AM(x n))

/5 /2018 Comp 41 - Fall 2018

23

A FUNDAMENTAL RESVLT

Turing's amazing Pr'oo-f—. Each model is capable of computing
exacty the same set of integer Lunctions! None is more
PowerPul than the others.

Proof Technique-. Constructions that
translate between
models

This means that we know of

BiGg IDEA: Computability, independent of o mechanisms (including

: ters) that
computation scheme chosen ?“;,';‘5‘;,?;?2 g z"ﬁ.u':i‘:;

Machine, in terms of the
functions they can compute.

/ 5
2

Church's Thesis:

Every discrete function computable

ANY redlizable machine is
compu+able by some Turing machine.

/5 /2018 k Comp 4l - Fall 2016 ‘ 24

COMPUTABLE FUNCTIONS inraniomns,

the contents of the 4ape when the ™M halis.

f(x) computable <=> for some k, all x: o

f(x) = T [x] = f(x) E

Repr‘eserﬁaﬁon tricks: to comPque Pk(x,y) (2 ir\Pquc;)

xy> = integer whose even bits come From x,
aond whose odd bits come from y; whence

f(x, y) = T [<x, y>]

flosas(X.Y) = x "y
foa5(X) = 1 iff x is prime, else O

/5 /2018 Comp 41 - Fall 208

25

TMSs, LIKE PROGRAMS, CAN MISBEHAVE

It is Poesilole that a given Turinﬁ Machine may not

Pr'ooluce a result For a given input tape. And it may
do so on entering on infFinite Ioop!

Consider the given ™. Current | Tape | Write Next
State | Input| Tape | Move | State

1t scans a tape looking 50 1 1 L | Halt

For the First non-zero so | o] o | R | s0

cell to the r'iath.

What does it do when tape,;, = ...
given a tape that has

no I's to its left?
tape, =

We say this TM does not

halt For that inPqu!

/s /2018

Comp 4 - Fall 2018

ololololo]o|0]1]0]O |---

t

0|1]o|o|o]o|o]o|o]O |-.-

t

26

ENVMERATION OF COMPUTABLE FUNCTIONS

Conceptual table of T™M behaviors..

VERTICAL AXIS: Enumeration of TMs,

HORIZONTAL AXIS: Enumeration of input tapes.

(j k) entry = result of TMK[J'] - integer, or * it it hever halts.

Tur'ina
Machine
FsSMs

|

Turina Machine Tapes

f0) f(1) f(2) f.()
fo | X1 X1 X0
| R1 XO 268
f, ()

Every computable
function is in this
fable, since everything
that we know how to
compute can be
computed by a TM.

Do there exist
well-specified integer
functions that a ™M
can't conrfu’re?

ho

2

The HaH'ina Problem: Given | k: Does TM,_ Halt with input |2

/s /2018

Comp 41 - Fall 208

27

THE HALTING PROBLEM

The Ha|+ina Function: T [k, j]1 = 1iff TM,[j] halts, else O
Can a Turing machine compute this function?

Suppose, for a moment, T, exists:

k
1 iff T [j] HALTS —
O otherwise TH \
Then we can buid a T, __ " ::bek,fi;g

diagenal of the

N

T
LOOP ~\1 T /h previdus sid
HALT < 0 HT

LOOP if T [k] = 1 (halts)
Thasy[®] HALT if T.1kj = 0 (Ioops)

/5 /2018 Comp 41 - Fall 208

I T, is
compu+a|9|e
then so is

T sty

/
U4

28

WhaT boes T, [NasTy] bo?

Anhswer:
TNagw[Nac;er] loops il TNangy[Nac;er] halts
TNangy[Nas’ry] halts it TNang\/[Nasi-y] loops

That's a contradiction.
Thus, T, is not compu’ralale loy a Tur'inﬂ Machine!

Net Result: There are some integer Ffunctions +hat Turing Mochines
simply cannot answer. Since, we know of no better model of
comPquaJrion than a Turinﬂ machine, this implies that there are some
well-speciﬁed problems that dePy computation.

/5 /2018 Comp 4l - Fall 2018 29

LIMITS OF TVRING MACHINES

A Turing machine is Lormal abstraction that addresses
Fundamental Limits of Computability -
What is means to compute.
The existence ofF uncomPqualole Functions.
We know of no machine more powertul than a Turing mochine
in terms of the functions that it can comPu+e.

But +hey ianor‘e
. Practical codina oF programs
. Performance
- Implemer\Jrabilier
. Proarammalailﬁy

- these latter issues are the primary Focus ofF contemporary
computer science (Remainder of Comp 41

/5 /2018 Comp 41l - Fall 2018 30

COMPUTABILITY VS. PROGRAMMABILITY

Jolol1lolol1l1lolol Sf

FSM

Factorization

Jolol1lolol1l1]lolol f
Jolol1lolol1l1lolol f
FSM s
FSM
Multiplication i -
P Is it prime?
Jolol1lolol1l1]lolol f
7 ’/’
FSM g
Sorting %

/s /2018

Recall Church's thesis:

"Any discrete Function computable by
ANY readlizable machine is comPquable
Iay some Turing Machine'

We've defined what it means to COMPUTE
(Whatever a TM can compute), but, a
Turing machine is no’rhinﬂ more that an FSM
that receives inputs from and outputs
onto, an inkinite tape.

sSo far, we've been dec;ianing a hew FSM
Lor each new Turing machine that we
encounter.

Wouldn't it be nice if we could desiﬁn a
mor-e 3eneral—|9urpoc;e Tur'ina machine<

Comp 4l - Fall 2018 3

PROGRAMS AS DATA

What i+ we encoded the description ofF the FSM on our tape, and —

then wrote a general purpose FSM +to read the tape and EMULATE

the behavior of the encoded machine? We could just store the
state-transition table £or our TM on the tape and then deeign a hew
TM that makes reference to it as often as it likes. i seems
possible that such a machine could be built.

"T} is pessible to invent a single machine \g\\\\‘ & (.
which can be used to compute any —= —
computable sequence. If this machine U is - T
supplied with a tape on the beginning of

which is written the SD ["s+::3c:rd
description" of an action table] of some
computing machine M, then U will compute
the same sequence as M

- Turing 1936 (Proc of the Londen
Mathematical Seciety, Ser. 2, Vol. 42)

/5 /2018 Comp 41 - Fall 208

32

FUNDAMENTAL RESULT: VNIVERSALITY

Define ‘Universa Function“ u(x,y) = Tx(y) For every x vy ..
Surprise! u(x,y) IS COMPUTABLE,
hence u(x,y) = Tu(<x,y>) for some U.

. INFINITELY many UTMs ..
Any one of them can

Universal Turing Machine (UTM): evaluate any computable
function by simulating/
TU [« Y, Z >] = Ty[z] emulating/interpreting

the actions of Tur"lnﬂ

L L K Tape = "data" machine 3iven to it

input.
TM = "program" az an Inpd

"interpreter" UNIVERSALITY:

PARADIGM For General-Purpose Computer! Basic requirement
‘ 2 For a general purpose

compu+er'

/5 /2018 Comp 41l - Fall 2018 33

DEMONSTRATING VNIVERSALITY

Suppose you've desianed Turing Machine T, and want to show that its universal.

p —

APPROACH:
L Find some khowh universal machine, say T,

2. Devise a program, P, to simulate T, on T Complete
T L<Px>] = T [x] For dl x

3. Since Tu[<y,z>] = Ty[z], it Follows that, for al y

T, [<P,<y,z>>] = T,[<y.z>] =

T;El yd|

CONCLUSION: Armed with program P, machine T, can mimic the
behavior of an ar'loiJrr'ar'y machine T, oPer'aJrir\.a oh an ar'loiJrr'ar'y ir\Pu+
+ape v

HENCE T, con comPque any Function that can be comPqued by any
Turinﬁ Machine.

/5 /2018 Comp 4l - Fall 20186 34

NEXT TIME

Enough theory already, let's build someJrhina!

Build SOMETHING

TIALSIN]

KEEP
CALM
AND

BUILD
SOMETHING

/5 /2018 Comp 41 - Fall 2018

