
10/22/2018 Comp 411 - Fall 2018

We can add “much” faster

Using more gates we can speed up adding considerably if
we add 2 “free” extra outputs
from our adder

● P, Propagate, means the
carry-out depends entirely
on the carry-in

● G, generates a carry-out
regardless of the carry-in

1

CI

 AB

G P S

CO

10/22/2018 Comp 411 - Fall 2018

Carry-skip adders

If all full adders in
a contiguous block
have their Propagate
true, then the incoming
carry-in can “skip” over
the entire block!

Requires extra AND
gates and a MUX,
but reduces the worst
case add-time

2

10/22/2018 Comp 411 - Fall 2018

Full Carry-Lookahead

The fastest adders use full carry look-ahead.

● Given the Ps and Gs
of a block, one can
simultaneously
compute the
carry-ins for all
bits as well as
the block using
the 3-level SOP
methods discussed last lecture.

● Results in an ϴ(log2(N)), Tpd , like an N-input AND gate,
using ≈2x more gates

3

10/24/2018 Comp 411 - Fall 2018

An Arithmetic Logic UNIT

4

01011
+00101
10000

● Shifts of shifts
● Boolean logic
● An ALU

10/24/2018 Comp 411 - Fall 2018

Shifting Logic

5

Shifting is a common operation that is applied to
groups of bits. Shifting is used for alignment,
selecting parts of a word, as well as for
arithmetic operations.

X << 1 is approx the same as 2*X
X >> 1 can be the same as X/2

For example:
 X = 000101002= 2010

Left Shift:
 (X << 1) = 001010002 = 4010

Right Shift:
 (X >> 1) = 000010102 = 1010

Signed or “Arithmetic” Right Shift:
 (-X >> 1) = (111011002 >> 1) = 111101102 = -1010

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT1

10/24/2018 Comp 411 - Fall 2018

More Shifting

6

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT3

Using the same
basic idea we can
build left shifters
of arbitrary shift
amounts using
muxes.

Each shift amount
requires its own
set of muxes.

Hum, maybe
we could do
something

more clever.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0
“0”
LFT2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT1

10/24/2018 Comp 411 - Fall 2018

Barrel Shifting

7

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0
“0”

LFT1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0
“0”

LFT2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

T7

T6

T5

T4

T3

T2

T1

T0“0”
LFT4

And, if we add one more
“shift-left-4” shifter we
can do any shift up to 7
bits!

If we connect our
“shift-left-two” shifter to
the output of our
“shift-left-one” we can
shift by 0, 1, 2, or 3 bits.

So, let’s put a box around it
and call it a new functional
block.

Left
Barrel
Shifter

A

Y

S

N-bits

N-bits

log2(N)
bits

10/24/2018 Comp 411 - Fall 2018

Adding a Twist

It would be straightforward to construct a “right barrel shifter” unit.
However, a simple trick that enables a “left barrel shifter” to do both.

8

A7-

0

A0 A7 A1 A6 A2 A5 A3 A4 A4 A3 A5 A2 A6 A1 A7 A0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Left Barrel ShifterSHFT

Y
Y0 Y7 Y1 Y6 Y2 Y5 Y3 Y4 Y4 Y3 Y5 Y2 Y6 Y1 Y7 Y0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

10/24/2018 Comp 411 - Fall 2018

Rotate AND Arithmetic shifts

The basics are the same for logical
and arithmetic shifts except instead
of shifting in zeros for the vacated
bits on arithmetic shifts, you shift in
copies of X0. For rotates, you shift
in the bits from the other end.

This adds two control lines, ASR,
and ROT, which are shared
amongst all of the LFTx units.

9

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0

LFT2

“0” 0
1 0

1
X0
X6

ROT

“0” 0
1 0

1
X0X7

ASR

The ASR MUX is just
an “AND” gate!X0

ASR

10/24/2018 Comp 411 - Fall 2018

Bitwise Logical Operations

We need to perform logical operations, or Booleans, on
groups of bits. Which ones?

10

ANDing is used for “masking” off groups of bits.
 ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ORing is used for “setting” groups of bits.
 ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

EORing is used for “complementing” groups of bits.
 ex. 10101110 ^ 00001111 = 10100001 (complement last 4 bits)

BICing is used to “clear” groups of bits (BIC = bit clear).
 ex. 10101110 & ~(00001111) = 01010000 (1’s clear)

10/24/2018 Comp 411 - Fall 2018

Boolean Unit (The obvious way)

It is simple to build up a Boolean unit using primitive
gates and a mux to select the function.

Since there is no interconnection
between bits, this unit can be simply
replicated at each position. The cost
is about 7 gates per bit. One for
each primitive function, and
approx 3 for the 4-input mux.

This is a straightforward, but not elegant design.

11

Ai Bi

Qi

Bool
00 01 10 11

This logic
block is
repeated for
each bit (i.e.
32 times)

10/24/2018 Comp 411 - Fall 2018

Cooler Bools

We can better leverage a MUX’s capabilities in our Boolean unit design,
by connecting the bits to the select lines.

Why is this better?

While it might take a little
logic to decode the truth
table inputs, you only have
to do it once, independent
of the number of bits.

BTW, it also handles the
MOV and MVN cases.

12

Qi

Ai, Bi

00 01 10 11

MVN

MOV
OR

EOR

MOV
AND
OR

MVN
OR

EOR
BIC

I should pay
more

attention to
those muxes

BooleanOpcode

A B

Q

Which ever way
makes the most
sense to you. Let’s
get a box around it!

10/24/2018 Comp 411 - Fall 2018

Decoding the Booleans and others

It may seem a little
tedious, but all the
controls that we need
can be derived from
the ARM OpCode
encodings.

The ‘X’s in the truth
table are “don’t cares”
they provide flexibility
in the implementation.

13

10/24/2018 Comp 411 - Fall 2018

An ALU, at last

We give the “Math Center” of a computer a special name--
the Arithmetic Logic Unit (ALU). For us, it just a big box
of gates!

14

That’s a
lot of
stuff

C,V N Z

A B

R

 Bidirectional
Barrel Shifter

Boolean
ADD
SUB
RSB

Sub/Rsb

Math 1 0 …

Shft
Rot/Asr/Rgt

b00,b01,b10,b11

5

3

42

