P\
WE cAN ADD "Much” EASTER I’lan

Using more gates we can speeal up addiﬂa conc;ialer'ably il
we add 2 "Free" extra outputs

C; ABC, S
From our adder S 00l0 o
® P, Propogate, means the AB 00 10 1
carry-out depends entirely ologo 1
on the carry-in j L O/11/1 O
° (4 ﬂener'aJrec; a carry—oqu L _ 1000 1
reaarcllesc; of the carry-in Cl 1011 O
g] 1101 O

S—
(040 _@ ? 111 1)1 1

G PS

10/22/2.018 Comp 41 - Fall 2018

CARRY-SKIP ADDERS

= all full adders in

a contiguous block
have their Propaanre
true, then the incoming

carry-in can "skip" over
the entire block!

Requires extra AND
gotes and a MUX,

but reduces the worst
case odd-time

C0 T

a, — FA — S

b, — o
=

a —FA s,

b, — 5
(S

a —FA —S

b — 1Y &

2 P,
RN

a,— FA =55

b |

10/22/2.018 ComP 41 - Fall 2018

FuLL CARRY-LOOKAHEAD

The Fastest adders use full carry look-ahead.

® Given the Ps and Gs

ofF a block, one can

A3z B3 A2z B2 A1 B1 Ao Bo

simuIJraneously
comPque the
car'r'y—inc; For all

bits as well as

the block usin@
the 3-level SOP
methods discussed last lecture.

® Results in an e(lan(N)), Ly ke an N—ihPu+ AND ga’re,

usina =I)X more anres

10/22/2.018 Comp 41 - Fall 2018

AN ARITUMETIC Looic UNIT f:

£)
@©
So they all rolled over and one fell out! e Shibts of shifs

® Boolean Ioaic
e An ALU

10/24/2018 Comp 41 - Fall 2018

SHIFNING Loosic

5hl£‘+lﬂ is a common operation that is aPPIied to

groups of bits, ShiPrinﬂ is used For ali%nment
selecting ports ofF a word, as well as for
arithmetic oper'aﬁons.

X << | isappr'ox-l-heeameas 26X
X >> 1 cah be the same as X/2

For example:
X =00010100,= 20,

Left shift:

(X << 1) =00101000, = 40,
Right shif:

(X >>1) =00001010, = 10,
Signed or "Arithmetic' Right Shift:

(-X>>1) = (11101100, >> 1) = 11110110, =-10

0/2-4/2018 Comp 41 - Fall 208

10

N

2]

)

=S

w

N

-_—

X X X X X X X X

o

HOL

NI NIRRT NRINRTI RIS NS

LFT1

MORE S'HOFT?NC»

(]

R,

(3}

NS

w

N

=Y

X x x x Xx X X X

o

“0”
LFT1

\" INRINI RIS NSNS

I0/24/2.018

7 O_S
1/ 7
X | o\ g
1/ 6
X N o
1/ 5
X, s
1/ 4
X N o
[N
0 S
1/ 2
X, L N
—L
% [
“0”J_1/ 0
LFT2

—Comp 4 -

u;inﬂ the same
basic idea we can
build lef+ shifFters
of ar'loiJrr'ar'y shif+
amounts uc;ina
MuXes.

Each shift amount
requires its owhn
set of muxes.

Hum, maybe
we could do
something

more clever.

AN
‘_

Fall 2018

X o s
1/ 7
X | o\
1/ 6
Xs | o\
1/ 5
Xl N
1/ 4
X o\
1/ 3
Xl 2N
x AT
0 S1
e
X 1 N
“0” 1/ 0
LFT3

BARREL SHIFTING
X

7 —0\ 7 N S
< 1 T
X | < 1 7
6) Re S <
< 1 0 T
X | < 1 6
5 Y Rs S <
< 1 0 T
X | < 1 5
4 BN R <
0 4 N S
< 1 0 T
X | < 1 4
3 N Rs S <
< 1 0 T
X | < 1 3
< 1 0 T
X | < 1 2
1 Y R S <
< — 11 0 T
X ‘ | < 1 1
0 NN R | <
171 YL 0 0 0\ So
0 — i“()”? 1 I T
—1 “0,, 1/ 0
LFT1
LF12_ | | F14
10/24/2018 Comp 41 - Fall 208

I+ we connect our
‘shift-leFH-two" shifter to
the output of our
'shift-lef+-one' we can
shif+ by O, | 2, or 3 bits,

And, if we add one more
‘shift-left-4" shifter we
con do any shif+ up to 7
bitsl

So, let's put a box around it
and call it a hew functional

block. A
T N-bits

'°§.zt<N) Left

(15

S Barrel
Shifter

{ N-bits
Y

ADDING A TWIST

I+ would be 9+r‘aiﬂhﬂ:or‘ward to construct a "r‘iath barrel shifter' unit.
However, a simple trick that enables a 'left barrel shifter"' to do both.

AA, ALA, ALA, AJA, AA, ALA, A LA A A,

o T Y Y Y Y Y

SHFT 47/ Left Barrel Shifter /

Y Y, Y, Y. Y, Y. Y. Y, Y Y, Y Y, YY YY,

Z7 ZG Z5 Z4 Z3 2 1 0

10/24/2018 Comp 41 - Fall 2018

ROTATE AND ARITHMETIC SHIFTS

N

The basics are the same for logjcal

(o2}

and arithmetic shifts except instead
ofF shiPrinﬂ in zeros for the vacated

(3

bits on arithmetic shifts, you shift in

i =S

copies ofF X, For rotates, you shif+
in the bits from the other end

w

N

This adds two control lines, ASR,
ASR

and ROT, which are shared -

=Y

amonaGJr al of the LFTx units. X—

X
0_

X X X X X X X X

vxvx

)\—\ o/)\—\ o/

The ASR MUX is us+ (1
ASR—
X5— } an “AND” gate! g

ROT

10/24/2018 Comp 41 - Fall

NI NRINXINRI NSRS NS NS

-
-
_|
N

BITwISE Looical OPERATIONS

We need to perform logical operations, or Booleans, on
P 9 P
groups of bits. Which ones?

ANDing is used For ‘masking' ofF groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)

ORing is used for 'seHina' groups of bits.
ex. 10101110 | 00001111 =10101111 (1’s set last 4 bits)

EORIing is used For ‘complementing' groups of bits.
ex. 10101110 ~ 00001111 = 10100001 (complement last 4 bits)

BiCing is used to ‘clear" groups of bits (BIC = bit clear).
ex. 10101110 & ~(00001111) = 01010000 (1’s clear)

0/2-4/2018 Comp 41 - Fall 208

P
BOOLEAN VNIT (THE oBviovs way) |||

]
1t is simple to build up a Boolean unit using primitive
gotes and a mux to select the Function A
i | i

Since there is ho interconnection Z?:g?g’c
between bits, this unit can be simply repeated for

_ o each bit (ie.
rePhcaJred at each Polerlon. The cost EQU 32 {imes)
is about 7 gotes per bit. One for

each primitive Function, and Bool 00 o1 10 71 /
approx 3 for the 4—inpu+ MUX. \‘

This is a 9+raiﬁh+1:orwarcl, but not elegant design. (‘2 A\?
i

I0/2-4/2.018 Comp 4l - Fall 2018 I

COOLER BOOLS

We can better leveroge a MUX's capobilities in our Boolean unit desiﬁn,

by connecting the bits to the select lines. MVN I should pay
MOV OR mov o
Why is this better? OR EOR AND [ﬂf;f'i“ﬁf;

MVN EOR BIC OR
While it miﬁanr toke a little

st <
logic to decode the truth A B. , \ /
table inPquc;, you only have v

to do it once, independ8ﬂ+ (‘1

of the humber of bits. ' A B
| W {4
BTW, it adlso handles the m:if;iﬁ::é Obcod
. JPCOUE_2 Boolean
MOV and MVN cases. sense fo you. Let's
get a box around H! {
Q

I0/24/2.018 Comp 4 - Fall 2018 73

—

DECODING THE BOOLEANS AND OTHERS |||

—
|+ may geem a h++\e Opcode Code 00 01 10 11 Sub | Rsb | Math
tedious, but all the Sk N T I N A

EOR 0 0 0 1 0 1 1 0 X X 0

COH"'Y-O‘G +ha+ we I’leed suB g 0 . 0 A X A A - 0 1
RSB 0 0 1 1 X | x X X 0 1 1

can be derived —pt"om ADD 0 1 0 0 X X X X 0 0 1
ADC 0 1 0 1 X | x X | x | o 0 1

+he AKM OPCOde SBC 0 1 1 0 X | x X X 1 0 1
enCOdinaG. RSC 0 g g 1 X | x X X 0 1 1
TST 1 0 0 0 0 0 0 1 X X 0

_ TEQ 1 0 0 1 0 1 1 0 X X | o

The "X's In the truth cMP 1 0 1 0 x | x | x | x | 1 0 1
table are 'don't cares' I T I A E R N B
+h8Y PrOVide —p-\eXIbllﬂ'y Mov ! ! 0 ! 0 ' ° ! X X 0
BIC 1 1 1 0 0 0 1 0 X X 0

in the implementation. [T [e oo [o [o [s o |

I0/2-4/2.018 Comp 4l - Fall 2018 13

AN ALV, AT LAST

We give the 'Math Center' of a computer a special name--
the Arithmetic Logic Unit (ALU). For us, it just a big box

oF ﬂa+69! A B

\ V /*/

Bidirectional
RotIAerRgt\ 3 / Barrel Shifter

l

Sub/Rsb 2 ADD
SUB Boolean

\ RSB
|
Math i
L |

CV N R Z

10/24/2018 Comp 41 - Fall 2018

4 b00,b01,b10,b11

