
10/22/2018 Comp 411 - Fall 2018

Arithmetic Circuits

1

01011
+00101
10000

Didn’t I learn how to do
addition in second grade?
UNC courses aren’t
what they used to be...

Finally; time to
build some

serious
functional

blocks We’ll need
a lot of
boxes

● How to add and
subtract using
combinational logic

● Setting flags
● Adding faster

10/22/2018 Comp 411 - Fall 2018

Review: Binary Representations

2

● Unsigned numbers, each increasingly significant bit has a weight of
the next larger power of 2

● Signed 2’s complement representation the most significant bit is a
negative power of 2.

1
29

1
28

1
210

1
27

1
26

0
25

1
24

0
23

1
22

1
21

0
20

1
 211

● Why?
○ They are compatible. The same logic can be used for both
○ Only “adders” are needed for both addition and subtraction

1
221

1
220

1
222

1
219

1
218

1
217

1
216

1
215

1
214

1
213

1
212

1
 223

1
 231

1
230

1
229

1
228

1
227

1
226

1
225

1
224

unsigned: signed:

 4294967254 -or- -42

10/22/2018 Comp 411 - Fall 2018

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

3

A: 1101
B:+ 0101

10010

1011
Carries from

previous column
Adding two N-bit
numbers produces
an (N+1)-bit result

Let’s start by building a block to add one column:
This functional block is called a “Full-adder”

 A B
 CO CI
 S

FA

Then we can cascade them to add two numbers of any size…

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

A3 B3 A2 B2 A1 B1 A0 B0

S4 S3 S2 S1 S0

10/22/2018 Comp 411 - Fall 2018

Design of a “Full Adder”

4

1) Start with a truth table:
2) Write down equations for the “1” outputs

3) Simplifying a bit

CO = (CI & (A ^ B)) | (A & B)
S = CI ^ (A ^ B)

CO = (!CI & A & B) | (CI & !A & B)
 | (CI & A & !B) | (CI & A & B)
S = (!CI & !A & B) | (!CI & A & !B)
 | (CI & !A & !B) | (CI & A & B)

CO = (CI & (A | B)) | (A & B)
S = CI ^ A ^ B

10/22/2018 Comp 411 - Fall 2018

As a Logic Diagram

5

● Our equations:
CO = (CI & (A ^ B)) | (A & B)
S = CI ^ (A ^ B)

CI

 AB

S

CO
“Sum”
Logic

“Carry”
Logic

● A little tricky, but finally
Only 5 gates/bit

10/22/2018 Comp 411 - Fall 2018

An Aside: Why Full Adder?

Suppose you don’t want/need a carry-in?

6

Then you get a
“half adder”
with 2 inputs
and 2 outputs:

 A B
 CO
 S

HA

A B CO S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0● Half-adder equations:
CO = A & B
 S = A ^ B

 AB

SCO

10/22/2018 Comp 411 - Fall 2018

Subtraction: A - B = A + (-B)

● Recall the trick was to “complement and add 1”
● How to complement?

● So now a unit that can either add or subtract

7

~ = bitwise complement

B
0

B B
1

B

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

A3 A2 A1 A0

S4 S3 S2 S1 S0

 B3 B2 B1 B0
SUB

But, what
about the “+1”?

10/22/2018 Comp 411 - Fall 2018

Reverse Subtract: -A + B

● And with a few more XOR gates we can subtract
either the A or the B operands

8

 B3 B2 B1 B0
SUB

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

A3 A2 A1 A0

S4 S3 S2 S1 S0

RSB

10/22/2018 Comp 411 - Fall 2018

Condition Flags

Besides the sum, one often wants four other
bits of information from an arithmetic unit,
the condition flags.

9

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 S31

C (carry): indicates the most
significant bit produced a
carry, e.g., “1 + (-1)” CO31 (of last FA)

V (overflow): indicates an
unexpected change in sign
e.g., “(230 - 1) + 1” (A31&B31&!S31) | (!A31&!B31&S31)

-- or --
CO31 ^ CO3o

How condition flags are
used in conditional
execution

Signed comparison:
 lt N ^ V
 le Z | (N ^ V)
 eq Z
 ne !Z
 ge !(N ^ V)
 gt !(Z | (N ^ V))

Unsigned comparison:
 hi C & !Z
 ls !C | Z
 lo !C (same as cc)
 hs C (same as cs)

10/22/2018 Comp 411 - Fall 2018

How fast is an Add?

Determined by Tpd of the FA chain

10

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 A B
CO CI
 S
FA

 An-1Bn-1 An-2 Bn-2 A2 B2 A1 B1 A0 B0

 S31 S30 S2 S1 S0

 A B
CO CI
 S
FA

 A B
CO CI
 S
FAC

…

Worse-case path: carry propagation from LSB to MSB,
e.g., when adding -1 to 1.

tPD = (tPD,XOR +tPD,AND + tPD,OR) +(N-2)*(tPD,OR + tPD,AND) + tPD,XOR ≈ Θ(N)

CI

A B

S

CO

10/22/2018 Comp 411 - Fall 2018

We can add “much” faster

Using more gates we can speed up adding considerably if
we add 2 “free” extra outputs
from our adder

● P, Propagate, means the
carry-out depends entirely
on the carry-in

● G, generates a carry-out
regardless of the carry-in

11

CI

 AB

G P S

CO

10/22/2018 Comp 411 - Fall 2018

Carry-skip adders

If all full adders in
a contiguous block
have their Propagate
true, then the incoming
carry-in can “skip” over
the entire block!

Requires extra AND
gates and a MUX,
but reduces the worst
case add-time

12

10/22/2018 Comp 411 - Fall 2018

Full Carry-Lookahead

The fastest adders use full carry look-ahead.

● Given the Ps and Gs
of a block, one can
simultaneously
compute the
carry-ins for all
bits as well as
the block using
the 3-level SOP
methods discussed last lecture.

● Results in an ϴ(log2(N)), Tpd , like an N-input AND gate,
using ≈2x more gates

13

10/22/2018 Comp 411 - Fall 2018

Next Time

We get shifty, no, Bool!

14

