Didn’t I learn how to do addition in second grade? UNC courses aren’t what they used to be...

Finally; time to build some serious functional blocks

We’ll need a lot of boxes

• How to add and subtract using combinational logic
• Setting flags
• Adding faster
Review: Binary Representations

- Unsigned numbers, each increasingly significant bit has a weight of the next larger power of 2.
- Signed 2's complement representation the most significant bit is a negative power of 2.

\[v = \sum_{i=0}^{n-1} 2^i b_i \]

\[v = -2^{n-1} b_{n-1} + \sum_{i=0}^{n-2} 2^i b_i \]

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	1	0

| 4294967254 | -or- | -42 |

- Why?
 - They are compatible. The same logic can be used for both
 - Only "adders" are needed for both addition and subtraction
Here's an example of binary addition as one might do it by "hand":

\[
\begin{array}{c}
\text{A:} & 1101 \\
\text{B:} & + 0101 \\
\hline
\text{10010}
\end{array}
\]

Let's start by building a block to add one column: This functional block is called a "Full-adder"

Then we can cascade them to add two numbers of any size...
Design of a “Full Adder”

1) Start with a truth table:

2) Write down equations for the “i” outputs

\[
\begin{align*}
 \text{CO} &= (!\text{CI} \land \text{A} \land \text{B}) \lor (\text{CI} \land !\text{A} \land \text{B}) \\
 &\quad \lor (\text{CI} \land \text{A} \land !\text{B}) \\
 \text{S} &= (!\text{CI} \land !\text{A} \land \text{B}) \lor (!\text{CI} \land \text{A} \land !\text{B}) \\
 &\quad \lor (\text{CI} \land !\text{A} \land !\text{B}) \\
\end{align*}
\]

\[
\begin{array}{cccc|cc}
\text{C}_i & \text{A} & \text{B} & \text{C}_o & \text{S} \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

3) Simplifying a bit

\[
\begin{align*}
 \text{CO} &= (\text{CI} \land (\text{A} \lor \text{B})) \lor (\text{A} \land \text{B}) \\
 \text{S} &= \text{CI} \land (\text{A} \land \text{B})
\end{align*}
\]
As a Logic Diagram

- Our equations:
 \[CO = (CI \& (A ^ B)) \mid (A \& B) \]
 \[S = CI \^ (A ^ B) \]

- A little tricky, but finally
 Only 5 gates/bit
An Aside: Why Full Adder?

Suppose you don’t want/need a carry-in?

Then you get a "half adder" with 2 inputs and 2 outputs:

- Half-adder equations:
 - CO = A & B
 - S = A ^ B

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>CO</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Subtraction: A - B = A + (-B)

- Recall the trick was to "complement and add 1"
- How to complement?
 \[\sim = \text{bitwise complement} \]

- So now a unit that can either add or subtract
Reverse Subtract: -A + B

- And with a few more XOR gates we can subtract either the A or the B operands.
Condition Flags

Besides the sum, one often wants four other bits of information from an arithmetic unit, the condition flags.

\(Z \) (zero): result is = 0 \hspace{1cm} \text{big NOR gate}
\(N \) (negative): result is < 0
\(C \) (carry): indicates the most significant bit produced a carry, e.g., "1 + (-1)" \hspace{1cm} \text{CO}_{31} \text{ (of last FA)}
\(V \) (overflow): indicates an unexpected change in sign e.g., "(2^{30} - 1) + 1"

Signed comparison:
\(H = N \oplus V \)
\(le = Z \lor (N \oplus V) \)
\(eq = Z \)
\(ne = \neg Z \)
\(ge = \neg(N \oplus V) \)
\(gt = \neg(Z \lor (N \oplus V)) \)

Unsigned comparison:
\(hi = C \land \neg Z \)
\(ls = \neg C \lor Z \)
\(lo = C \) \text{ (same as cc)}
\(hs = C \) \text{ (same as cs)}
How fast is an Add?

Determined by T_{pd} of the FA chain

Worse-case path: carry propagation from LSB to MSB, e.g., when adding -1 to 1.

$$t_{PD} = (t_{PD,XOR} + t_{PD,AND} + t_{PD,OR}) + (N-2)*(t_{PD,OR} + t_{PD,AND}) + t_{PD,XOR} \approx \Theta(N)$$
WE CAN ADD “MUCH” FASTER

Using more gates we can speed up adding considerably if we add 2 “free” extra outputs from our adder

- **P**, Propagate, means the carry-out depends entirely on the carry-in
- **G**, generates a carry-out regardless of the carry-in

<table>
<thead>
<tr>
<th>Ci</th>
<th>A</th>
<th>B</th>
<th>Co</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
CARRY-SKIP ADDERS

If all full adders in a contiguous block have their Propagate true, then the incoming carry-in can "skip" over the entire block!

Requires extra AND gates and a MUX, but reduces the worst case add-time
Full Carry-Lookahead

The fastest adders use full carry look-ahead.

- Given the Ps and Gs of a block, one can simultaneously compute the carry-ins for all bits as well as the block using the 3-level SOP methods discussed last lecture.

- Results in an $\Theta(\log_2(N))$, T_{pd}, like an N-input AND gate, using $\approx 2x$ more gates.
Next Time

We get shifty, no, Bool!