
10/1/2018 Comp 411 - Fall 2018

Assemblers and Linkers

1

When I find my code in tons of trouble,
Friends and colleagues come to me,

Speaking words of wisdom:
"Write in C."

Long, long, time ago, I can still remember
How mnemonics used to make me smile...
Cause I knew with just those opcode names
that I could play some assembly games
and I’d be hacking kernels in just awhile.
But Comp 411 made me shiver,
With every new lecture that was delivered,
There was bad news at the doorstep,
I just didn’t get the problem sets.
I can’t remember if I cried,
When inspecting my stack frame’s insides,
All I know is that it crushed my pride,
On the day the joy of software died.
And I was singing…

● Problem set #2 due
tonight at 11:59:59pm

● 1st midterm next
Monday (10/8)

● Midterm study
session first 45 mins
of Friday’s lab

10/1/2018 Comp 411 - Fall 2018

A Route from Program to Bits

2

∙ Traditional Compilation

C or C++ program

Compiler

Assembly Code “Executable”

Loader

“Memory”

High-level, portable
(architecture independent)
program description

Architecture, ISA,
Dependent program
description with symbolic
memory references

Machine language with
“some” remaining symbolic
memory references

A collection of precompiled
object code modules

Machine language
with all memory references
resolved

Program and data bits
loaded into memory

Assembler

Linker

“Library Routines”

“Object Code”

10/1/2018 Comp 411 - Fall 2018

What an Assembler does

Assembly is just a recipe for sequentually filling memory locations.

3

.word 0x03fffffc, 0x00000020

.space 6

.word 0xE3A00000, 0xE2900001, 0x1AFFFFFD

Address Contents in decimal
0x00000000 : 0x03FFFFFC 67108860
0x00000004 : 0x00000020 32
0x00000008 : 0x00000000 0
0x0000000C : 0x00000000 0
0x00000010 : 0x00000000 0
0x00000014 : 0x00000000 0
0x00000018 : 0x00000000 0
0x0000001C : 0x00000000 0
0x00000020 : 0xE3A00000 -476053504
0x00000024 : 0xE2900001 -493879295
0x00000028 : 0x1AFFFFFD 452984829
0x0000002C : 0x00000000 0

You can even
assemble and run
this program

10/1/2018 Comp 411 - Fall 2018

What an Assembler does

Assembly is just a recipe for sequentually filling memory locations.

4

.word 0x03fffffc, 0x00000020

.space 6
main: mov r0,#0
loop: adds r0,r0,#1
 bne loop
 andeq r0,r0,r0

Address Contents in decimal
0x00000000 : 0x03FFFFFC 67108860
0x00000004 : 0x00000020 32
0x00000008 : 0x00000000 0
0x0000000C : 0x00000000 0
0x00000010 : 0x00000000 0
0x00000014 : 0x00000000 0
0x00000018 : 0x00000000 0
0x0000001C : 0x00000000 0
0x00000020 : 0xE3A00000 -476053504
0x00000024 : 0xE2900001 -493879295
0x00000028 : 0x1AFFFFFD 452984829
0x0000002C : 0x00000000 0

And this recipe is
equivalent to the
first

10/1/2018 Comp 411 - Fall 2018

How an Assembler Works

Three major components of assembly
1) Allocating and initializing data storage
2) Conversion of mnemonics to binary instructions
3) Resolving addresses

5

 .word 0x03fffffc, main
array: .space 11
total: .word 0

main: mov r1,#array
 mov r2,#0
 mov r3,#1
 ldr r0,total

b test
loop: add r0,r0,r3
 str r3,[r1,r2,lsl #2]
 add r3,r3,r3
 add r2,r2,#1
test: cmp r2,#11
 blt loop
 str r0,total
*halt: b halt

Need to figure out this
immediate value

This one is a PC-relative offset
This is a forward reference

This offset is completely different
than the one a few instructions ago

So is this

10/1/2018 Comp 411 - Fall 2018

Resolving Addresses- 1
st
 Pass

“Old-style” 2-pass assembler approach

6

● In the first pass, data and
instructions are encoded
and assigned offsets,
while a symbol table is
constructed.

● Unresolved address
references are set to 0

“Old-style” 2-pass assembler approach

10/1/2018 Comp 411 - Fall 2018

Resolving Addresses in 2
nd
 pass

7

“Old-style” 2-pass assembler approach

● In the first pass, data and
instructions are encoded
and assigned offsets,
while a symbol table is
constructed.

● Unresolved address
references are set to 0

10/1/2018 Comp 411 - Fall 2018

Modern 1-pass Assembler

Modern assemblers keep more information in their symbol
table which allows them to resolve addresses in a single pass.
● Known addresses (backward references) are immediately resolved.
● Unknown or unresolved addresses (forward references) are

“back-filled” once they are resolved.

8

State of the symbol
table after the
instruction
str r3, [r1,r2,lsl #2]
is assembled

10/1/2018 Comp 411 - Fall 2018

Role of a Linker

Some aspects of address resolution cannot be handled by the assembler alone.

1. References to data or routines in other object modules
2. The layout of all segments in memory
3. Support for REUSABLE code modules
4. Support for RELOCATABLE code modules

This final step of resolution is the job of a LINKER

9

Linker
Executable

File

Libraries

Source
file Assembler Object

file

Source
file Assembler Object

file

Source
file Assembler Object

file

To handle this an object file
includes a symbol table with:

1) Unresolved references
2) Addresses of labels declared

to be “global” (i.e. accessible
to other object modules).

10/1/2018 Comp 411 - Fall 2018

Static and Dynamic Libraries

● LIBRARIES are commonly used routines stored as a concatenation of
“Object files”. A global symbol table is maintained for the entire library
with entry points for each routine.

● When a routine in a LIBRARY is referenced by an assembly module, the
routine’s address is resolved by the LINKER, and the appropriate code is
added to the executable. This sort of linking is called STATIC linking.

● Many programs use common libraries. It is wasteful of both memory and
disk space to include the same code in multiple executables. The modern
alternative to STATIC linking is to allow the LOADER and THE PROGRAM
ITSELF to resolve the addresses of libraries routines. This form of lining
is called DYNAMIC linking (e.x. .dll).

10

10/1/2018 Comp 411 - Fall 2018

Dynamically Linked Libraries

● C call to library function:

● Assembly code

11

printf(“sqr[%d] = %d\n”, x, y);

 mov R0,#1
 mov R1,ctrlstring
 ldr R2,x
 ldr R3,y
 mov IP,#__stdio__
 mov LR,PC
 ldr PC,[IP,#16]

How does
dynamic linking
work?

Why are we loading
the PC from a
memory location
rather than
branching?Two things:

1) This is the first time we’ve seen
the IP (r12) register used

2) At the mov instruction the PC is
pointing to the instruction after
the ldr

10/1/2018 Comp 411 - Fall 2018

Dynamically Linked Libraries

12

.globl __stdio__:
__stdio__:
fopen: .word sysload
fclose: .word sysload
fgetc: .word sysload
fputc: .word sysload
fprintf: .word sysload

Before any call is made to a
procedure in “stdio.dll”

.globl __stdio__:
__stdio__:
fopen: dfopen
fclose: dclose
fgetc: dfgetc
fputc: dfputc
fprintf: dprintf

After the first call is made
to any procedure in “stdio.dll”

Because, the
entry points to
dynamic library
routines are
stored in a
TABLE. And the
contents of this
table are loaded
on an “as needed”
basis!

 sysload: stmfd sp!,[r0-r10,lr]
.
.
; check if stdio module
; is loaded, if not load it
.
.
; backpatch jump table
mov r1,__stdio__
mov r0,dfopen
str r0,[r1]
mov r0,dfclose
str r0,[r1,#4]
mov r0,dfputc
str r0,[r1,#8]
mov r0,dfgetc
str r0,[r1,#12]
mov r0,dfprintf
str r0,[r1,#16]

• Lazy address resolution:

10/1/2018 Comp 411 - Fall 2018

Modern Languages

Intermediate “object code language”

13

Java program

Compiler

JVM bytecodes

Interpreter

“Library Routines”

High-level, portable (architecture
independent) program description

PORTABLE mnemonic program
description with symbolic memory
references

An application that EMULATES a
virtual machine. Can be written
for any Instruction Set Architecture.
In the end, machine language
instructions must be executed for
each JVM bytecode

10/1/2018 Comp 411 - Fall 2018

Modern Languages

Intermediate “object code language”

14

Java program

Compiler

JVM bytecodes

JIT Complier

“Library Routines”

High-level, portable (architecture
independent) program description

PORTABLE mnemonic program
description with symbolic memory
references

While interpreting on the first pass
the JIT keeps a copy of the machine
language instructions used.
Future references access machine
language code, avoiding further
interpretation

Machine code

Today’s JITs are nearly as
fast as a native compiled code.

10/1/2018 Comp 411 - Fall 2018

Assembly? Really?

● In the early days compilers were dumb
○ literal line-by-line generation of assembly code of “C” source
○ This was efficient in terms of S/W development time

■ C is portable, ISA independent, write once– run anywhere
■ C is easier to read and understand
■ Details of stack allocation and memory management are hidden

○ However, a savvy programmer could nearly always generate
code that would execute faster

● Enter the modern era of Compilers
○ Focused on optimized code-generation
○ Captured the common tricks that low-level programmers used
○ Meticulous bookkeeping (i.e. will I ever use this variable again?)
○ It is hard for even the best hacker to improve on code

generated by good optimizing compilers
15

10/1/2018 Comp 411 - Fall 2018

Next Time

● Play with the ARM
compiler

● Compiler code
optimization

● We look deeper into the
Rabbit hole

16

