ASSEMBLERS AND LINKERS

Long, long, time ago, I can still remember
How mnemonics used +o make me smile..
Cause I knew with just those opcode names
that I could play some assembly games

and T'd be hacking kernels in just awhile.
But Comp HIl made me shiver,

With every new lecture that was delivered,
There was bad news at the doorstep,

I just didn't get the problem sets.

I can’t remember if I cried,

When inspecting my stack frame’s insides,
All T know is that it crushed my pride,

On the day the joy of software died.

And I was singing...

10/1/22.018 Comp 41 - Fall 2018

When I find my code in fons of frouble,
Friends and colleagues come to me,
Speaking words of wisdom:
"Wr;+e in C"

Problem set #2 due
+on39h+ at 1:59:59pm
Is$ midterm next
Monday (10/8)
Midterm study

session first 4S mins

of Friday’s lab

A ROVTE FROM PrOGRAM TO BITS
Traditional Compilation

High~level, portable
(architecture independent)
program description

Architecture, TSA,
Dependent program
description with symbolic

memory references

Machine lanquage with
“some” remaining symbolic
memory references

I0/1/22018

C or C++ program

< Compiler

‘Library Routines'

Assembly Code

‘Executadble’

Assembler

v

‘Object Code'

"Memor'y‘l

Comp 41 - Fall 208

A collection of precompiled
object code modules

Machine lanquage
with all memory references

resolved

Program and data bits
loaded into memory

WHAT AN ASSEMBLER DOES

Agsembly is just a recipe For sequentually Pil\inﬂ memory locations.

e

.word
.Space
.word

0x00000000

—
0x03fffffc,0/x00000020/\§ oxcaono

6
OxE3A00000, OxE2900001, 0X1AFF;FFE\\\
SN, \ A\

You can even
assemble and run

this program

I0/1/22018

0x00000004

| ©0x00000008

0x00060000C
0x00000010
0x00000014
0x00000018

0x00000028
0x0000002C

Contents

: OXO3FFFFFC
: 0x00000020
: 0x00000000
: 0x00000000
: 0x00000000
: 0x00000000
: 0x00000000
| Ox0000001C

i 0x00000020
0x00000024

0x000600000

: OxE3A00000
: 8xE2900001
: @x1AFFFFFD
: 8x00000000

in decimal
67108860

32

0

0
0
0
0

0
-476053504
-493879295

452984829
0

Address Contents

Instruction

\

9

0X00000020

OXE3A00000 |[.word OXE3AG0000, OXE2900001, OX1AFFFFFD ; [MOV RO, #0]

0Xx00000024 || OXE2900001 |[[ADDS RO, RO, #1]

0Xx00000028 || OX1AFFFFFD [|[BNE .-4]

0X0000002C | OXO0OO00000

CoprML—leZ@B

WHAT AN ASSEMBLER DOES

Agsembly is just a recipe For sequentually Pil\inﬂ memory locations.

Address

0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018
0x0000001C
0x00000020
0x00000024
0x00000028
0x0000002C

Contents

: OXO3FFFFFC
: 0x00000020
: 0x00000000
: 0x00000000
: 0x00000000
: 0x00000000
: 0x00000000
: 0x00000000
: OxE3A00000
: BxE2900001
: OXTAFFFFFD
: 0x00000000

in decimal
67108860

32

0

0
0
0
0

0
-476053504
-493879295

452984829
0

Instruction

.word Ox03fffffc, Ox00000020
.space 6
main: mov ro, #0
loop: adds ro, ro, #1
bne loop
andeq ro,ro,ro
And this recipe is
e‘luiVCllen‘I' +o +he Address Contents
first
\

‘/ 0X00000020 | OXE3ACO000 (main: mov ro,#0
0X00000024 || OXE2900001 |loop: adds r0O,ro,#1
0x00000028 || OX1AFFFFFD |bne loop
0X0000002C || OX00000000 [andeq ro,ro,ro

10/1/22.018

CoprML—leZ@B

How AN ASSEMBLER WoORKS

Three major‘ componenJrc:» of asc;emlaly

D) Allocating and initializing data storage

2) Conversion of mnemonics to Ioinar'y instructions

3) Resolving addresses

array:
total:

main:

loop:

*halt:

I0/1/22018

.word
.Space
.word

mov
mov
mov
ldr
b

add
str
add
add
cmp
blt
str
b

__Sois thi

0x03fffffc, [main |- s
11 “Tg
0

___Need {o figure out this
r1,#array.-$;mmedia-l»esvalue
r2,#0
r3,#1 __This one is a PC-relative offset

tal ‘38 + —Tisisa forward reference
ro,ro,r3

r3,[r1,r2,1sl #2]

r3, r3,r3

r2,r2,#1

r2, #11

loop __This offset is completely different

ro, total-—" 4han the one a few instruchions agqo
halt ‘“8)

Comp 41 - Fall 2018

P
RESOLVING ADDRESSES-)T PASS Th

"Old—9+yle" 2-pass assembler approoch

Address | Machine code Assembly code
(%] Bx03FFFFFC .word oxe3fffffc, main
4 OxB666000660
8 array: .space 11
52 0x0600000600 total: .word %}
56 OxE3AB10666 main: mov r1,#array
60 OxE3AD26600 mov r2,#e
64 OxE3AB3601 mov r3, #1
68 OxE51F06686 ldr ro, total
72 OxEABBBBE6 b test
76 OxEBB8006003 loop: add ro,re,r3
80 0xE7813102 str r3,[r1,r2,1sl #2]
84 BxEB833603 add r3,r3,r3
88 BxE2822601 add r2,r2,#1
92 BOxE3520008B test: cmp r2,#11
96 OxBABBBBBO blt loop
100 BxES50FB0666 str ro, total
164 OxEABBBBE6 *halt: b halt
10/1/2.018 COWP‘MW—Fdllﬂa

—

Ih the First pass, data and
instructions are encoded
and ossigned offsets,
while a symbol table is
constructed.

Unresolved address
references are set to O

Symbol Address
array 8
total 52
main 56
loop 76
test 92
halt 104

RESOLVING ADDRESSES (N 2"° pASS

"OId—eryle“ 2-pass assembler approoch

[l

S

Address | Machine code Assembly code In +he First pass, data and

0 Ox03FFFFFC .word oxe3fffffc, main instructions are encoded
4 Ox00000038 d] d PF—
8 grupve mapece 0 \ and assigned o sets,

52 0x0060600000 total: .word @ while a symbol table is

constructed.

56 OxE3A01008 €< main: mov r1,#array Ny ved odd

60 OXE3AB20600 mov r2,#0 nresolved aadress

64 OxE3A03001 mov references are set to O
68 OxE51F0018 Iar

72 OxEAODB003 — ftest

76 OxEB86006003 loop: add ro, ronrs3

80 OxE7813102 str r3,[r1,X2, Symbol Address

84 OXE0833003 add r3, r3,r3 \ array 8

88 BxE2822601 add r2,r2,#1 = total 52

92 OxE352000B test: cmp r2,#11 ~ main 56

96 OxBAFFFFF9 blt loop 76

1006 OxES56F00838 FE T, tcotal test 92

104 OXEAFFFFFE | *halt: b halt -+ halt 104

10/1/2.018 ComP 4 - Fall 2018

MODERN)-PASS ASSEMBLER

—
—

vf’_&:{ \
=]

Modern assemblers keep more infFormation in their symbol
table which adllows them to resolve addresses in a single pass.
e Knowh addresses (backward references) are immeoliaJrer resolved.

e Unkhown or uhresolved addresses (Forward references) are
‘back-Filed" once they are resolved.

State of the symbol Symbol Address | Resolved?| Reference list
table after the array 8 y 56
instruction ~
str 3 [rlr2lsl #2] 4~ tota 1 52 y 68
is assembled T main 56 y 4
loop 76 y ?
test ? n 72

10/1/2018 Comp 4l - Fall 2018 8

ROLE OF A LINKER

Some aspects ofF address resolution cannot be handied loy the assembler alone.

| References to data or routines in other object modules
2. The layout of all segments in memory
3. Support for REUSABLE code modules To handie this an object Fie

4. support for RELOCATABLE code modules ~ ncludes a symbol table with
) Unresolved references

' 2) Addresses of labels declared
This Final c;+eP of resolution is the Job of a LINKER to be "global’ (ie. accessible

o o to other object modules).

So\frce —p> Assembler —Pp Ob:ec-l-
file ile \

\
U4
?5:‘ —»> Assembler —9 e — Linker File

—) —)
Source —> Assembler —» Object T

file ile
7 Y

10/1/2018 Comp 4l - Fall 2018 9

=\
STATIC AND DYNAMIC LIBRARIES L]

e LIBRARIEES are commonly used routines stored as a concatenation of
“Olajec+ Fies" A global c;ymloo\ table is maintained for the entire library
with el"l'l'r‘y Poirﬂ'e For each routine.

e Wheh a routine in a LIBRARY is referenced on an acssembly module, the
routine's address is resolved Iax/ the LINKER, and the appropriate code is
added to the executdble. This sort of Iinkina is caled STATIC \inkina.

e Many programs use common libraries. It is wasteful of both memot-y ond
disk. space to include the same code in multiple executables. The modern
alternative to STATIC linkina is to dlow the LOADER and THE PROGRAM
ITSELF to resolve the addresses of libraries routines. This form of lining
is called DYNAMIC linking (ex. dI.

10/1/2.018 Comp 4l - Fall 2018 10

DynamicaLLy LINKED LIBRARIES

e C cdl to Iilor‘ar‘y Function:

printf(“sqr[%d] = %d\n”, x, y);

o A%emb\y code

Two things:

mov
mov
1dr
1dr
mov
mov
1dr

RO, #1
R1,ctrlstring
R2, x
R3,y
IP,#__stdio
P - Why are we leadin
LR, PC § et foma
PC,[IP,#16] memory location
// rather than
1 branching?

§

I) This is the first ime we've seen

the IP (rl2) register used

2) A} fhe mov instruction the PC is
pointing to the instruction after

the Idr

I0/1/22018

Comp 41 - Fall 2018

How does
dynamic linking
work?

/,9
2

DynamicaLLy LINKED LIBRARIES

+ Lazy address resolution:
sysload: stmfd sp!,[r0-r10,1r]

Because, the
entry points to
dynamic library
routines are
stored in a
TABLE. And the
contents of this
{able are loaded

on an "as needed”

basis! \

)

I0/1/22018

: check if stdio module

; is loaded,

if not load it

; backpatch jump table

mov
mov
str
mov
str
mov
str
mov
str
mov
str

ri, __
ro,dfopen
ro,[r1]
ro,dfclose
ro,[r1,#4]
ro,dfputc
ro,[r1,#8]
ro,dfgetc
ro, [r1,#12]
ro,dfprintf
ro,[r1,#16]

stdio__

\

Comp 41 - Fall 208

Before any call is made joa |
procedure in “stdiedll”

.globl _ stdio_ :
__stdio__:

fopen:
fclose:
fgetc:
fputc:
fprintf:

.word
.word
.word
.word
.word

sysload
sysload
sysload
sysload
sysload

After the first call is made
o any procedure in “stdiodll”

.globl _ stdio_ :
__stdio__ :

fopen:
fclose:
fgetc:
fputc:
fprintf:

dfopen
dclose
dfgetc
dfputc

dprintf

MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description Java program

PORTABLE mnemenic program . <0
description with symbolic memory IM by‘recodes L'brar)’ eowhnes

references /L ‘

An application that EMULATES a

virtual machine. Can be written < Iﬂ'l’erPre'l’er 5
for any Instruction Set Archidecture. _—

In the end, machine language

instructions must be executed for

each JMM bytecode

10/1/22.018 Comp 41 - Fall 2018

MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description Java program

+

PORTABLE mnemenic program . <0
description with symbolic memory IM by‘recodes L'brar)’ eowhnes

rences

While interpreting on the first pass
the JIT keeps a copy of the machine
language instructions used.

0

Future references access machine TOCIOyJS JlTs are nearly as
!2;,"9:‘,?9;25,’,17. avetdng further fast as a nalive compiled code.

Machine code

10/1/22.018 Comp 41 - Fall 2018

o~
ASSEMBLY? REALLY? 1]

—
® In the early alays compilers were dumb

o literal line-by-line generation of assembly code of 'C" source

o This was eblicient in terms ol S/W development time
m C is portable, ISA independent, write once- run anywhere
m C is easier to read and understand
m Detais of stack alocation and memory management are hidden

o However, a Savvy progrommer could nearly always generate
code that would execute fFaster

® Enter the modern era of Compilers
o Focused on oPﬁmized code—aer\er‘aﬁor\
o Captured the common tricks that low-level programmers used
o Meticulous Iaookkeepir\ﬂ (ie. will | ever use this varidble aﬂain?)
o It is hard for even the best hacker to improve on code

ﬁeneraJred by ﬁood optimizing compiers
10/1/2.018 Comp 4l - Fall 2018 5

NEXT TIME

® Play with the ARM
compiler

e Compiler code
optimization

e We look deeper into the
Rabbit hole

10/1/22.018 Comp 41 - Fall 2018

