P\
COMPILERS AND TNTERPRETERS Th

—

® Pointers, the
oddresses we can see

® Programs that write
other progroms

® Moanaging the details

A compiler is a program ) Okay.. stil playing catch
that, when fed itself as input, up. We'll move the First
produces TTSELF] midterm +o 10/8
\ Then how was the first ) i1 problem set goes
(g compi,el‘ written? out +oniah+. 2nd is d?ae IO/,
_"" 3) Short lecture and mini lab
on Fr‘iday.

09/26/2018 Comp 4l - Fall 2018 |



wnaem ve
.word
X : .word
main: ldr
mov
halt: b
09/26/2018

Oxe3fffffc, main

miniARM
42
What is in registers RO and Rl
RO, x after these two instructions
R 1 #X are e’TeC\J'}ed?

pel

halt §

ComP 41 - Fall 2018



P N
AN ASIDE; LETS € I’Inﬂ

C is the ancestor +o most Ianﬂuaaeg commonly used +oclay.

{Alﬂol, Fortran Pascal} — C — C++ — Java
C was developed to write the operating system UNIX.
C is otill wiclely used for "c;stremc:»" programming

C's developers were frustrated that the
hiah—level Ianauaaes available at the time,
lacked many of the capabilities of ac;c;emlaly.

An aalvanJrage of high-level languages is that
they are portoble (ie. not ISA speciﬁc).

C, thus, was an a++em|9+ to create a Por+alale

blend of a "hiah—level Iar\ﬁuage" and "assembler"

09/26/2.018 Comp 4l - Fall 2018 3



€ BEGAT JAVA

C++ was envisioned to add Object-Oriented (00) concepts
From simula and CLU on top of C

Java was envisioned to be more purely OO,
and to hide the details of memoty
manaaemerﬁ os well as
Class/Method/Member implementation

For our purposes C is amost identical o JAVA except:
- C has "Functions' whereas JAVA has 'methods.

- C haos exPlicPr variables that contain the addresses
of other varidbles or data structures in memor-y.

- JAVA hides addresses under the covers.

09/26/2.018 Comp 41 - Fall 2018



Youe EIRST € POINTER!

Lets start with a feature that Java does hot have-- called "PoinJrer‘G"

int 1 = 4; // simple integer variable
int a[10]; // array of integers (a is a pointer)
int *p; // pointer to integer (s)

*(expression) means the 'contents of address computed by expression'

. . Array variables are our first hint that
a [ 1 ] = % ( at1l ) “pointers” exist. The name of an array tells
us where a collections of indexable
variables could be found.

a is a constant of type "1nt * We now know that all variables are
shorthands for addresses in memory.

a[i] = a[i+1] = *(a+i) = *(a+j_+'|) Normalvariablesarejus-}-}heO“‘elemen-}
of a length “I" array. \
L)

09/26/2.018 Comp 41 - Fall 2018



OTHER POINTER RELATED SYNTAX

int 1i;
int a[l10];
int *p;

09/26/2.018

\»
i

//
//
//

//
//
//
//
//
//
//

//
//

simple integer variable
array of integers
pointer to integer (s)

& means address of (not AND)

no need for & on a

address of 6" element of a
change value of that location
change value of next location
exactly the same as above

step pointer to the next element

increments contents of location
get contents, and then modifies p

The ampersand operator, “&”, means “give me the address of this variable reference”. Whereas the
/ star operator, “*", means “give me the contents of the memory location implied by the
expression”. These are VERY different things. Not fo mention, “&” and “*" can sometimes be
confusing because of their other uses as “anding” and “multiplying” operators.

Comp 41 - Fall 208



LEcAL VSES OF POINTERS

int i; // simple integer variable
int a[l0]; // array of integers
int *p; // pointer to integer (s)

So what happens when: p = &i;
What is value of p[0]?

What is value of p[1l]°?
pl0] is always an dlias for the
variable i in this context. pfl]
could reference al0], but don't
count on i \

)

09/26/2.018 Comp 41 - Fall 2018



€ POINTERS VS. OBTECT SIZE

int i; // simple integer variable
int a[l0]; // array of integers

int *p; // pointer to integer(s)

1 = *p++;

Does “p++” really add 1 to the pointer?
NO! It adds 4. Why 4°

The “char” type is slightly different than the 4ype of the same name in

char *qg; Java. C chars are 8-bit signed bytes. Java chars are 16-bits and hold
\ / only Unicode variables (they have no sign). Java has a type called

At? “byte” that is most similar fo a C “char”.

gt++; // really does add 1

09/26/2.018 Comp 41 - Fall 2018



CLEAR)2,S, ALL ARE VALID C!

void clear1(int array[], int size) {jhgﬁmfmAmy
for (int i = 0; i < size; i++)
array[i] = ©;

}
void clear2(int array[], int size) WriHen using C "Poinfer*
for (int *p = array; p < array +/gif‘“5p++
*p = 0
}

void clear3(int =*array, int size) {
. . . "7\ Array is just a pointer.
int *end = array + size; '/h
while (array < end)
*array++ = 0;

09/26/2.018 Comp 41 - Fall 2018



POINTER SUMMARY

. 1N the 'C" world and in the 'machine' world:
a pointer is just the address of an object in memory

\

size ofF pointer is Fixed and architecture dependerHr,
reﬂardlesc; of size of object that it points to

to get to objects ofF the same type, we offFset by increments
of the object's size in bytes

Ex: to get the the i object add i * sizeor( object)

. More details:

- int R[5] = R (ie. R is an inbt o 2.0 on’rec; of 9+or'aﬁe)
- R[i] = *(R+i) (array ofFsets are just pointer arithmetic)
- int #p = &R[3] = p = (R+3) (p points to 3™ element of R)

09/26/2018 Comp 4l - Fall 2018 10



INDIRECT ADDRESSING

- What we want:
- The contents of a memory location held in a register

Examp\esz
“ARM Assembly”
“C”
int x = 10; X: .word 10 B Loads the “address”
int x main: mov R2, #x -. a:ﬁ:i:&ndﬁs
main () { mov R3,#2 on
int *y = &x; str R3, [R2]
*y = 2; bx LR
}
Caveats

- You must make sure that the register contains a valid address
(double, word, or short aligned as requirecl)

09/26/2.018 Comp 4 - Fall 2018 I



P\
COMPILERS AS TEMPLATE MaTcHers |||

—

The basic task of a compiler is to scan a Fie lookinﬂ For particulor sequences
of operators and Keywor‘dc:- called templates.

The First major sor+t of template is on expression We've alreacly Played around
cor\verﬂnﬁ C expressions to asc;emla\y |anﬂuaae. A comPiler does Iaac;ically the

same +hl|’\ﬂ Here the compiler noticed
that the desired constant
was Yoo big to it as an X. .word O
ir:en::;u'}e cons+an’|',b'|-5° roy: .WO rg ?2 4
C a new varijable, ¢, °
int x, y: 7/+o k?ﬂ'}{’fk ",f“"s c: .wor 3456
= (x-3)%(y+123456) " § oot Vol
constant names are 1dr RB
cryptic, so you can't sub R0 R0 #3
generate them by chance). ldr R1 Y
1dr R2
. add R1 R1 , R2
Once a template is matched, a mul RO RO, R1
str RO, VY

compiler emits a speciﬁic code
sequence.

09/26/2018 Comp 4l - Fall 2018 7



€ ARRAYS

The C source code

int hist[100];
int score = 92;

hist[score] += 1; score.

might translate to:

hist: .space 100
score: .word 92
mov R3,#hist
ldr R2,score
ldr R1l, [R3,R2,LSL #2]
add R1,R1,#1
str R1l, [R3,R2,LSL #2]

92

hist:

Aclclress:
CONSTANT base address + scaled VARTABLE offse}

09/26/2018 Comp 41 - Fall 2018



€ "“srevers”

C ‘structs' are \i@h’rweiﬁth ‘container objec’rcs" -
objects with members, but no methods.

There is special "Javo-like' syntox For accessing
particular members: variablemember (ac+ually,
Java's dot operator " is borrowed from C)

You can also have PoinJrer‘s to structs.

struct Point {

C provides an new operator ftwed int x, v
to access them: Smlr  } P1, P2, *p;

) ) AS o *p+))
pointerVariable->member™ X~ " oy
. dereference Pl-x - 157;
n place of the alternative SYNtax: jsner
/ explicit by

(tpointerVariable)member /’8 s — gp

more

by p->y = 123;

09/26/2.018 Comp 41 - Fall 2018



STRUCTS (N ACTION

struct

Point {

int x, y;
} P1, P2, xp;

P1.x =

p
P->y =

157;

&P1;

123;

m:9h+ +ranslate to:

.space 8
P2. .space 8
p: .space 4

mov
mov
str
str
1ldr
mov
str

09/26/2018

R1, #P1

RO, #157
RO, [R1,#0]
R1,p

R2, #p

RO, #123
RO, [R2,#4]

l&idrtuss:
VARTABLE base address + CONSTANT offset

p: &P/
P2: P2ly
P2(x
P1: P1ly
: P1.x = 157 P1|x
7 p = &P1
: p->y = 123

COWP‘MW~Fd|Z@8



€ “IF” T6 ASSEMBLY TRANSLATION

C code:

if (expr) {
STUFF
}

C code:

if (expr) {
STUFF1

} else {
STUFF2

}

09/26/2.018

ARM assembly:

(compute expr)
beq Lendif

(compile STUFF)

Lendif:

Note: the branches used in

assembly “SKIP” code blocks ™ (Y
rather than cause them o be
executed. This offen resulls

in a complement fest!

Comp 41 - Fall 208

ARM assembly:

(compute expr)
beq Lelse

(compile STUFF1)
b Lendif
Lelse:

(compile STUFF2)

Lendif:



C "WHILE” LooPs

C code:

while (expr)
STUFF
}

{

Assembly:
Lwhile:
(compute expr)
beq Lendw
(compile STUFF)
b Lwhile
Lendw:

Alternate
Assembly:

b Ltest

Lwhile:
(compile STUFF)

Ltest:

(compute expr)
bne Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
- movina all Poc;c;ible comPquaJrions outside of IooPc;

- unroling loops to reduce Ioranchina overhead

- GimPIiPyinﬂ expressions that depend on ‘loop variables'

09/26/2.018

Comp 41 - Fall 208



C "FOR” LOOPS

Most high-level lanauajes Pr'ovicle loop constructs
that establish and update an iterator, which
controls the loop's behavior

for (initialization; conditional; afterthought) {

STUFF;
}
For loops are the most
commonly used form of
Assemb |¥ - iteration found programming
(compile initialization) langucges.
Lfor: Their advantage is readabiliy.
Y —  They bring together the three
(compute conditional) n N A i
beq Lendfor ? § iteration, seHsi':g an initial
. value, establishing a
(CO mp I_I e STUF F) termination condHion, and giving
(compile afterthought) an update rule.
B Lfor Ahhh, but one other
Lendfor: :l':el:la'l'lon forms there

Ay

N
09/26/2.018 Comp 41 - Fall 2018 M



NEXT TIME

. The details behind assemblers
- 2-pass and -pass assemlaly
. Linkers and dynamic libraries

oA
_vexy

09/26/2.018 Comp 41 - Fall 2018




