STACKS AND PROCEDURES

I forgot, am I Don't know. But, if
the Caller you PUSH again T'm
or Callee? \ / gonna POP you.

NS

Language support Lor modular code is an integral part ofF modern com puter
organization. In particular, support for subroutines, procedures, and Funchons.

09/24/2017 Comp 41 - Fall 208

THE BEAUTY OF PROCEDURES Th

e Reusable code Pr‘aﬁmenJrs (modular desian) -0

clear_screen();
// code to draw a bunch of lines
clear_screen();

® Parometerized Pr'ocedures (variable behaviors)
line(x1,y1,x2,y2,color); for (dnt i = 0: i < N-1: i++)
; . line(x[i],yl[i],x[i+1],y[i+1],color);
line(x2,y2,x3,y3, color); Line(x[i],ylil,x[0],y[8],color);
e Functions (procedures that return values)

xMax = max(max(x1,x2),x3);
yMax = max(max(y1,y2),y3);

\0

09/24/207 ComP 41 - Fall 2018

MORE PROCEDURE POWER

® Globadl vs. Local scope (Name Independence)

int x = 9; “n
int fee(int x) { $— These are drﬁemn+ XS How do we
return x+x-1; keep +rack O‘F
}
int foo(int i) { all -.H\ese
int x = 0; _¢—This is yet another “x* variables?
while (i > 0) { /
= x + fee(i); ?i 2
i=1-1;
> &
T That “feel " seems odd 4o me?
main() { And, foo()'s a bit square.
fee(foo(x));

}

\ N
?%\E

09/24/2017 Comp 41 - Fall 208

UsiNG PROCEDURES

* A ‘cdling' program (Caller) must:

- Provide the Pr'oceclure’s parameters. In other words, put arguments
in a place where the Procedure can access them

- Traonsfer control to the Pr'ocedur‘e
'Branch' 1o it, and rowde a 'link" back

o A ‘cdled Procedure (Callee) must

- Acquire/create resources needed to Perf—orm the function
(local varidbles, registers, etc.)

- Perform the function

- Place results in a place where the Caler can Find them

- Return control back to the Cdller through the supplied link
e Solution (a least a partial one):

- WE NEED CONVENTIONS, agr‘eeol upon standards for how arguments
are Pasc;ed in and how funhction results are retrieved

- Solution Par'+ #. Allocate reﬁlsi'erc; For these GPeCI—pIC Functions
09/24/2017 Comp 41 - Fall 208

ARM REGISTER

VSAGE

Recadl these conventions from last time

e Conventions desiﬂnoﬂ'e Register
registers For procedure RO-R3
arguments (RO-R3) and
return values (RO-R3). RA-R10

o The ISA desianaJres a
“Iir\kage PCJ'II’H'G\"ll LOY‘ R11
caliing procedures (Ri4)

e Transfer control to R12
Qallee ugna the BL R13
iInstruction

e Return to Caller with i
the BX LR instruction

R15

09/24/2.017

Comp 41 - Fall 208

Use

First 4 procedure arguments.
Return values are placed in RO and R1.

Saved registers. Must save before using
and restore before returning.

FP - Frame pointer
(to access a procedure’s local variables)

IP - Temp register used by assembler

SP - Stack pointer
Points to next available word

LR - Link Register (return address)

PC - program counter

P\
AND IT ALMOST Works! ﬂaTl

S
X: .word 9 Works for cases where Callees
need few resources and call ne
other functions.
Callee
fee: ADD RO,RO,RO This type of function (one that calls
ADD RO, RO, #1 doeeili® no other) is called a LEAF function.
BX LR ') apecrﬂed register.
i is used fo
rehurn 4o the oddress But +here are still a few issues:
after the one where
es" woe called How does a Callee call functions?®
Caller More +han 4 arquments?
main: LDR RO . x Recall +hat when +he “*)
P " e — ki oppended o [ocal variables?
branch instruction, it
BL ee causes the address of Where does main return $o°
BX LR the next instruction fo
be saved in the “linkage

register”, R Let's consider the worst case of a

Callee who is a Caller..

09/24/2017 Comp 4l - Fall 2018 G

CALLEES WHO cALL THEMSELF!

int sqgr(int x) {
if (x > 1) How do we go about writing
x = sqr(x-1)+x+x-1; nor-leak procedures?
return x; Procedures that call other
Pr'oceduree, perhaps even

themselves.

sqr(10) = sqr(9)+10+10-1 =100
sqr (10) ; sqr(9) = sqr(8)+9+9-1 = 81
} sqr(8) = sqr(7)+8+8-1 = 64
Oh, recursion sqr(7) = sqr(6)+7+7-1 = 49
gives me a sqr(6) = sqr(5)+6+6-1 = 36
headache, ‘. sqr(5) = sqr(4)+5+5-1 = 25
sqgr(4) = sqgr(3)+4+4-1 = 16
sqr(3) = sqr(2)+3+3-1 =9
sqr(2) = sqr(1)+2+2-1 =4
sqr(1) =1
sqr(0) =0

09/24/2017 Comp 41 - Fall 2018

}

main ()

int sqgr(int x) { sqr: CMP RO, #1
1f (x > 1) BLE return
X = sqgr (x—-1)+x+x-1; R4 is clobbered — ¢~ MOV R4, RO
return x; on successive SUB RO, RO, #1
} CO"S. BIL, SQR

ADD RO, RO, R4
ADD RO, RO, R4

main () SUB RO,RO, #1 Weadlse
{ return: BX LR dobber our
sqgr (10) ; Y /r:jurn)
| T T it
BL Sqr way back!
BX LR

Will savir\ﬂ "% in memory rather than in a regierer help?

ie. reploce MOV R4,RO with STR RO, x and athg LDR R4,x after BL SQR

09/24/207 Comp 4l - Fall 2018 8

A PROCEDURE'S STORAGE NEEDS

® In addition to a conventions for using registers o pass in arguments
ond return results, we dlso need a mearis for allocating new
variables For each instance when a procedure is called
The 'Local varidbles"' of the Callee:

® Locadl varidbles are specitic to a 'particular' invocation or activation
of the Callee. Collectively, the arguments passed in, the return
address, and the callee’'s local variables are its
activation record or call frame.

09/24/207 Comp 4l - Fall 2018 9

LIVES OF ACTIVATION RECORDS

int sqgr(int x) {

if (x> 1) Where are activation
= sqgr(x-1)+x+x-1;
ceturn x; e records stored?
}
, TIME

sqr(3) sqr(3) sqr(3) sqgr(3) | | sqr(3)
sqr(2) sqr(2) sqr(2)
sqr(1)

Each call of sqp) has a diferent notion of —_ g/
what °x" is, and a different place 4o return fo. gb»

A Proceclure CCI” Cl"€CI+€S a hew Re-l-urn -l-o PreViOuS CIC'HVCI'HOn l"GCOl"cl
activation record. Caller’s record when procedure finishes, permanently
is preserved because we'll need it cliscarding activation record created by
when call finally returns. call we are returning from.

09/24/207 Comp 41l - Fall 2018 10

WE NEED DYNAMIC STORAGE!

What we heed is a
SCRATCH memory For

holding temporary varidbles.
We'd like For this memory

to grow and shrink. as

heeded And, we'd ke it to
have an easy manaaemen+

Policy.
One Possibilﬂy is a

STACK

A last-in-First-out (LIFO)
data structure.

09/24/2.017

Comp 41 - Fall 208

Some in+er'e9+in3
properties ofF
stacks:

SMALL OVERHEAD.

Every+hin3 is
referenced relative
to the top, the
so-call

'+oP—o-P_9+ack'
Add things by
PUSHING new values
on +oP.

Remove things by

POPPING values.

ARM STack CONVENTION
CONVENTIONS:

. Dedicate a register Lor
the Stack Pointer
(sP = B). SP

.- Stack grows DOWN
(towards lower addresses)
on pushes and dllocates

- SP Poin+9 to the last or
TOP *usedt location.

03FFFFFC

- Stack is placed far away 00000008,
From the program
and its data.

09/24/2017 Comp 41 - Fall 208

Higher

“stack” segment

'

“fex}” seqment
(Program) f

Reserved

Lower
addresses

Pois syt 4o

4QL 34 1Pyt st
Ay, ~wwny

TurBS STack INSTRUCTIONS L]

S
Recal ARM's block move instructions LDMFD and STMFD which are

ideal for implementing our stack. The '™M' means multiple, the 'F' means
full (ie. the sP points to the last pushed entry, os opposed to 'E' For
empty, the next available en+ry), and the 'D"' stands for dec;cendir\ﬂ
(ﬂrowina towards lower addresses, vs. ‘A" for ascending).

STMFD SP!,{r4,r7,LR} LRMFD SP!',{r4,r7,LR}
noreasing s ot increasing
addresses <used> 9~ are always saved in order of addresses <used>
* <used> j? largest 4o smalleset * <used>
<used> [®— |nitial SP <used> {¥— Final SP
R LR Pugimipty e
R7 R7 B o o "
R4 14— Final SP R4 14— Initial SP
<free> <free>
<free> <free>

09/24/207 Comp 41 - Fall 2018

INCOrRPORATING A STACK

int sqgr (int x) {
if (x > 1)

X = sqgr (x—-1)+x+x-1;

return Xx;

main ()

sqgr (10) ;

09/24/2.017

return:

main:

Comp 41 - Fall 208

STME'D
CMP
BLE
MOV
SUB
BL
ADD
ADD
SUB
LRMFD
BX

MOV
BL
BX

SP!, {R4,LR}
RO, #1
return

R4, RO
RO,RO, #1
SOR

RO, RO, R4
RO, RO, R4
RO,RO, #1
SP!, {R4,LR}
LR

RO, #10
sqr
LR

REVISITING FACTORIAL

int fact(x) {
if (x <= 1)
return x;
else
return x*xfact(x-1);

int x = 5;
int y;

y = fact(x);

I+ works! And the changes are
relatively small. Just saving rt
and |p on entry, and replacing
them before returning

main:

fact:

return:

1dr
bl

str
bx

.word
.word

stmfd
cmp
ble
mov
sub
bl
mul
ldmfd
bx

09/24/207 Comp 41 - Fall 2018

ro, x

fact
ro,y

miniARM

1r

sp!,{r4,1r}
ro, #1
return
r4,ro

ro, ro, #1
fact
ro,ro, r4
sp!,{r4,1r}
1r

p—__ N
MISSING DETAILS 1N

¢

Thus Far the stack has been only been used on calee's that are also
calers (ie. honleak Pr'oceolures) to save resources that "+hey" ond
"their cadller" expect to be Pre;erveol.

Our Pr'ocedure callinﬂ convention works, but it has a Few limitations..

BALM

| Callee’'s are limited to 4 arguments

\!‘24)0 o}

2. Al arguments must "‘Fit' into a single register ITESTIY

3. What if our argument is not a "‘value"

but instead, an address of where to
Pqu a result (ie. an array, on olajech, etc.)

‘Which brings us to my next point.’'

09/24/2017 Comp 4l - Fall 2018 &

CALLER PROVIDED STORAGE

IF a cadler cals a function that requires more than 4 arguments, it
must Place these extra araumerﬁrs on the stack, and remove them

when the cadllee returns.

sumé :
int sum6(int a, int b, int c, int d, int e, int f) {
return a+b+c+d+e+f;
}
int main() {
return sum6(2,3,4,5,6,7);
} main:
<used>
SP =1 <ysed>
RO: 2 7
R1: 3 SP-8 | 5
R3: 4
R4: 5 <free>
<free> halt:

09/24/207 Comp 41 - Fall 2018

add r1,ro0,ri
add ri,r1,r2
add ri,r1,r3
1dr r2, [sp, #0]
add ro,r1,r2
ldr r2, [sp, #4]
add ro,ro, r2
bx 1r
sub sp, sp, #8
mov r3,#6
str r3, [sp,#9]
mov r3,#7
str r3, [sp, #4]
mov ro, #2
mov ri1,#3
mov r2,#4
mov r3,#5
bl sumé6

| add sp,sp,#8 |
b halt

: b=a+b
;. b=b+c
; b=b+d

: a=b+e

; a=a+f

Ll

—

; allocate extra args

=\
COMPLEX ARGUMENTS L]

How do we pass arguments that dont Fit in a register?

- Arrays
- Objedrs
- Dictionaries

- etc. Value Reference

Rather than copy the complex arguments, we instead just send an
‘address' ofF where the complex argument is in memory.

Conundrum: Callees process 'copies’ of simple arguments, and thus
any modifications they make don't affect the original. But, with
complex arﬁumerﬁs, the cadllee modifies the oriﬁinal version.

09/24/2017 ComP 41 - Fall 2018

NEXT TIME

Special varidble types For holclir\ﬂ '‘oddresses"

. Pointers
2. Der‘eﬁerencinﬁ
3. Addresses ofF pointers

09/24/2017 Comp 41 - Fall 2018

