
09/24/2017 Comp 411 - Fall 2018 

Stacks and Procedures

Language support for modular code is an integral part of modern computer 
organization. In particular, support for subroutines, procedures, and functions.

1

Don’t know. But, if 
you PUSH again I’m 

gonna POP you.

I forgot, am I 
the Caller
or Callee?



09/24/2017 Comp 411 - Fall 2018 

The Beauty of Procedures

● Reusable code fragments (modular design)
clear_screen();

… // code to draw a bunch of lines
clear_screen();

… 
● Parameterized procedures (variable behaviors)

line(x1,y1,x2,y2,color);
line(x2,y2,x3,y3,color);

…
● Functions (procedures that return values)

xMax = max(max(x1,x2),x3);
yMax = max(max(y1,y2),y3);

2

for (int i = 0; i < N-1; i++)
    line(x[i],y[i],x[i+1],y[i+1],color);
line(x[i],y[i],x[0],y[0],color);



09/24/2017 Comp 411 - Fall 2018 

More Procedure Power

● Global vs. Local scope (Name Independence)
int x = 9;
int fee(int x) {

return x+x-1;
}
int foo(int i) {

int x = 0;
while (i > 0) {

        x = x + fee(i);
        i = i - 1;

}
  return x;
}
main() {
     fee(foo(x));
}

3

These are different “x”s

This is yet another “x”

How do we
keep track of
all these
variables?

That “fee( )” seems odd to me? 
And, foo( )’s a bit square.



09/24/2017 Comp 411 - Fall 2018 

Using Procedures

● A “calling” program (Caller) must:
– Provide the procedure’s parameters. In other words, put arguments 

in a place where the procedure can access them
– Transfer control to the procedure.

“Branch” to it, and provide a “link” back
● A “called” procedure (Callee) must:

– Acquire/create resources needed to perform the function 
(local variables, registers, etc.)

– Perform the function
– Place results in a place where the Caller can find them
– Return control back to the Caller through the supplied link

● Solution (a least a partial one):
– WE NEED CONVENTIONS, agreed upon standards for how arguments 

are passed in and how function results are retrieved 
– Solution part #1: Allocate registers for these specific functions

4



09/24/2017 Comp 411 - Fall 2018 

ARM Register Usage

Recall these conventions from last time

● Conventions designate 
registers for procedure 
arguments (R0-R3) and 
return values (R0-R3). 

● The ISA designates a 
“linkage pointer” for 
calling procedures (R14)

● Transfer control to 
Callee using the BL 
instruction

● Return to Caller with 
the BX LR instruction

5

Register Use

R0-R3 First 4 procedure arguments.
Return values are placed in R0 and R1.

R4-R10 Saved registers. Must save before using 
and restore before returning. 

R11 FP - Frame pointer 
(to access a procedure’s local variables)

R12 IP - Temp register used by assembler

R13 SP - Stack pointer
Points to next available word

R14 LR - Link Register (return address)

R15 PC - program counter 



09/24/2017 Comp 411 - Fall 2018 

And it almost works!

Works for cases where Callees 
need few resources and call no 
other functions. 

This type of function (one that calls 
no other) is called a LEAF function.

But there are still a few issues:
   How does a Callee call functions?
   More than 4 arguments?
   Local variables?
   Where does main return to?

Let’s consider the worst case of a 
Callee who is a Caller...

6

x: .word 9

fee: ADD R0,R0,R0
          ADD R0,R0,#1

BX LR

main: LDR R0,x
BL fee
BX LR

Recall that when the “L” 
suffix is appended to a 
branch instruction, it 
causes the address of 
the next instruction to 
be saved in the “linkage 
register”, LR.

The “BX” instruction 
changes the PC to the 
contents of the 
specified register. 
Here it is used to 
return to the address 
after the one where 
“fee” was called.

Callee

Caller



09/24/2017 Comp 411 - Fall 2018 

Callees who call themself!

7

How do we go about writing 
non-leaf procedures? 
Procedures that call other 
procedures, perhaps even 
themselves.

int sqr(int x) { 
  if (x > 1)
    x = sqr(x-1)+x+x-1;
  return x; 
}

main()
{
  sqr(10);
}

Oh, recursion 
gives me a 
headache.

sqr(10) = sqr(9)+10+10-1 = 100
sqr(9) = sqr(8)+9+9-1 = 81
sqr(8) = sqr(7)+8+8-1 = 64
sqr(7) = sqr(6)+7+7-1 = 49
sqr(6) = sqr(5)+6+6-1 = 36
sqr(5) = sqr(4)+5+5-1 = 25
sqr(4) = sqr(3)+4+4-1 = 16
sqr(3) = sqr(2)+3+3-1 = 9
sqr(2) = sqr(1)+2+2-1 = 4
sqr(1) = 1
sqr(0) = 0



09/24/2017 Comp 411 - Fall 2018 

A First Try

8

int sqr(int x) { 
  if (x > 1)
    x = sqr(x-1)+x+x-1;
  return x; 
}

main()
{
  sqr(10);
}

sqr: CMP R0,#1
BLE return
MOV R4,R0
SUB R0,R0,#1
BL SQR
ADD R0,R0,R4
ADD R0,R0,R4
SUB R0,R0,#1

return: BX LR

main: MOV R0,#10
BL sqr
BX LR

R4 is clobbered
on successive 
calls.

We also
clobber our
return
address, so
there’s no
way back!

OOPS! 

Will saving “x” in memory rather than in a register help?

i.e. replace  MOV R4,R0  with   STR R0,x and adding  LDR R4,x  after  BL SQR



09/24/2017 Comp 411 - Fall 2018 

A Procedure’s Storage Needs

● In addition to a conventions for using registers to pass in arguments 
and return results, we also need a means for allocating new 
variables for each instance when a procedure is called.  
The “Local variables” of the Callee:

...
{ 
int x, y;

  ... x ... y ...;
}

● Local variables are specific to a “particular” invocation or activation 
of the Callee. Collectively, the arguments passed in, the return 
address, and the callee’s local variables are its 
activation record, or call frame.

9



09/24/2017 Comp 411 - Fall 2018 

Lives of Activation Records

10

int sqr(int x) { 
  if (x > 1)
    x = sqr(x-1)+x+x-1;
  return x; 
}

sqr(3)

TIME

A procedure call creates a new 
activation record.  Caller’s record 
is preserved because we’ll need it 
when call finally returns.

Return to previous activation record 
when procedure finishes, permanently 
discarding activation record created by 
call we are returning from.

sqr(3)
sqr(2)

sqr(3)
sqr(2)

Where are activation 
records stored?

sqr(3)
sqr(2)
sqr(1)

sqr(3)

Each call of sqr(x) has a different notion of 
what “x” is, and a different place to return to.



09/24/2017 Comp 411 - Fall 2018 

We need dynamic storage!

11

What we need is a 
SCRATCH memory for 
holding temporary variables. 
We’d like for this memory 
to grow and shrink as 
needed. And, we’d like it to 
have an easy management 
policy.

Some interesting 
properties of 
stacks:

SMALL OVERHEAD. 
Everything is 
referenced relative 
to the top, the 
 so-called 
     “top-of-stack”

Add things by 
PUSHING new values 
on top.

Remove things by 
POPPING off values.

One possibility is a 

STACK

A last-in-first-out (LIFO) 
data structure.



09/24/2017 Comp 411 - Fall 2018 

ARM Stack Convention

12

CONVENTIONS:
• Dedicate a register for 

the Stack Pointer 
(SP = 13).

• Stack grows DOWN  
(towards lower addresses) 
on pushes and allocates

• SP points to the last or 
TOP *used* location.

• Stack is placed far away
from the program
and its data.

SP

Higher 
addresses

Lower 
addresses

Humm… Why
is that the TOP
of the stack?

Reserved

“text” segment
(Program)

“stack” segment
03FFFFFC

0000000816



09/24/2017 Comp 411 - Fall 2018 

LR

R7

R4

Turbo Stack InstrucTions

Recall ARM’s block move instructions LDMFD and STMFD which are 
ideal for implementing our stack. The “M” means multiple, the “F” means 
full (i.e. the SP points to the last pushed entry, as opposed to “E” for 
empty, the next available entry), and the “D” stands for descending 
(growing towards lower addresses, vs. “A” for ascending).

STMFD SP!,{r4,r7,LR} LRMFD SP!,{r4,r7,LR}

13

<free>

<free>

Initial SP

increasing 
addresses

<free>

<free>

<used>

<used>

<used>
increasing 
addresses

Final SP

R4

R7

LR

Initial SP<free>

<free>

<free>

R4

R7

LR

Final SP

<used>

<used>

<used>
Regardless of order that 
registers appear in the set, they 
are always saved in order of 
largest to smalleset

The specified registers 
are loaded and the SP  is 
changed, but the copy in 
memory remains



09/24/2017 Comp 411 - Fall 2018 

Incorporating A StaCK

14

int sqr(int x) { 
  if (x > 1)
    x = sqr(x-1)+x+x-1;
  return x; 
}

main()
{
  sqr(10);
}

sqr: STMFD SP!,{R4,LR}
CMP R0,#1
BLE return
MOV R4,R0
SUB R0,R0,#1
BL SQR
ADD R0,R0,R4
ADD R0,R0,R4
SUB R0,R0,#1

return: LRMFD SP!,{R4,LR}
BX LR

main: MOV R0,#10
BL sqr
BX LR



09/24/2017 Comp 411 - Fall 2018 

Revisiting Factorial

15

main:   ldr     r0,x
        bl      fact
        str     r0,y
        bx      lr

x:      .word   5
y:      .word   0

fact:   stmfd   sp!,{r4,lr}
        cmp     r0,#1
        ble     return
        mov     r4,r0
        sub     r0,r0,#1
        bl      fact
        mul     r0,r0,r4
return: ldmfd   sp!,{r4,lr}
        bx      lr

int fact(x) {
    if (x <= 1)
        return x;
    else
        return x*fact(x-1);
}

int x = 5;
int y;

y = fact(x);

miniARM

It works! And the changes are 
relatively small. Just saving r4 
and lp on entry, and replacing 
them before returning



09/24/2017 Comp 411 - Fall 2018 

Missing Details

Thus far the stack has been only been used by callee’s that are also 
callers (i.e. non-leaf procedures) to save resources that “they” and 
“their caller” expect to be preserved.

Our procedure calling convention works, but it has a few limitations...

1. Callee’s are limited to 4 arguments
2. All arguments must “fit” into a single register
3. What if our argument is not a “value”, 

but instead, an address of where to 
put a result (i.e. an array, an object, etc.)

16



09/24/2017 Comp 411 - Fall 2018 

CallER provided Storage

If a caller calls a function that requires more than 4 arguments, it 
must place these extra arguments on the stack, and remove them 
when the callee returns. 

17

int sum6(int a, int b, int c, int d, int e, int f) {
    return a+b+c+d+e+f;
}

int main() {
    return sum6(2,3,4,5,6,7);
}

sum6:   add     r1,r0,r1     ; b=a+b
        add     r1,r1,r2     ; b=b+c
        add     r1,r1,r3     ; b=b+d
        ldr     r2,[sp, #0]
        add     r0,r1,r2     ; a=b+e
        ldr     r2,[sp, #4] 
        add     r0,r0,r2     ; a=a+f
        bx      lr
 
main:   sub     sp,sp,#8   ; allocate extra args 
        mov     r3,#6 
        str     r3,[sp,#0] 
        mov     r3,#7 
        str     r3,[sp,#4] 
        mov     r0,#2 
        mov     r1,#3
        mov     r2,#4 
        mov     r3,#5
        bl      sum6
        add     sp,sp,#8
halt:   b       halt

R0:       2
R1:       3
R3:       4
R4:       5

<used>

<used>

<free>

<free>

SP → 

7

6SP-8 → 

<free>

<free>



09/24/2017 Comp 411 - Fall 2018 

Complex Arguments

How do we pass arguments that don’t fit in a register?

- Arrays
- Objects
- Dictionaries
- etc.

Rather than copy the complex arguments, we instead just send an 
“address” of where the complex argument is in memory.

Conundrum:  Callees process “copies” of simple arguments, and thus 
any modifications they make don’t affect the original. But, with 
complex arguments, the callee modifies the original version.

18



09/24/2017 Comp 411 - Fall 2018 

Next time

Special variable types for holding “addresses”

1. Pointers
2. Dereferencing
3. Addresses of pointers

19


