
09/10/2018 Comp 411 - Fall 2017

Branch Instructions

Standard branch instructions, B<suffix> and BL<suffix>, change the PC based on the
PCR. The next instruction’s address is found by adding a 24-bit signed 2’s complement
immediate value multiplied by 4 to the PC+8, giving a range of +/- 32 Mbytes. Larger
branches use the BX<suffix> instruction, where the next instruction’s address is from
a register.

1

000Cond 0010 1111 1111 1111 0001R type: Rn

0000 - EQ - equals
0001 - NE - not equals
0010 - CS - carry set
0011 - CC - carry clear
0100 - MI - negative
0101 - PL - positive or zero
0110 - VS - overflow
0111 - VC - no overflow
1000 - HI - higher (unsigned)
1001 - LS - lower or same (unsigned)
1010 - GE - greater or equal (signed)
1011 - LT - less than (signed)
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)
1110 - “” - always

If the condition is true, the PC is
changed by either adding the
immediate value to PC+8, or setting
it to the contents of Rn.

BTW, BX is encoded as a TEQ
instruction with its S field set to “0”

101 LCond Imm24B type:

4 3 1 24

1

09/10/2018 Comp 411 - Fall 2017

Branch Examples

Bne else

BLeq func

BX LR

loop: B loop

2

If some previous CMP instruction had a non-zero result (i.e. making
the “Z” bit 0 in the PSR), then this instruction will cause the PC to be
loaded with the address having the label “else”.

If some previous CMP instruction set the “Z” bit in the PSR, then this
instruction will cause the PC to be loaded with the address having the
label “func”, and the address of the following instruction will be saved
in R14.

“Always” loads the PC with the contents of R14. This is called an
“unconditional” branch.

An infinite loop.
BTW: This instruction is encoded as: 0xEAFFFFFE

101 01110 1111 1111 1111 1111 1111 1110

B-type
format

“always” Don’t save the
return address

-2, which implies
PC + 8 -2*4 = PC

NOTE: ARM assemblers are “case-insensitive”
with regard to instruction mneumonics.
I am mixing upper and lower case here to emphasize
the <suffix> component of the instruction.

09/10/2018 Comp 411 - Fall 2017

A simple Program

; Assembly code for; sum = 0;
; for (i = 0; i <= 10; i++)
; sum = sum + i;

main: mov R1,#0 ; R1 is i
 mov R0,#0 ; R0 is sum
loop: add R0,R0,R1 ; sum = sum + i
 add R1,R1,#1 ; i++
 cmp R1,#10 ; i <= 10
 ble loop
halt: b halt

3

miniARM

You will notice that the miniARM
simulator, works like an actual
processor… meaning that the first two
words in memory, must be preloaded
with two addresses, the first is an
initial value for R13 (SP), and the second
is an initial value for R15 (PC)

09/10/2018 Comp 411 - Fall 2017

Load and Stores in action

An example of how loads and stores are used to access arrays.

Java/C:

int x[10];
int sum = 0;

for (int i = 0; i < 10; i++)
 sum += x[i];

4

Assembly:

x: .word 1,3,5,7,9,11,13,15,17,19
sum: .word 0

main: mov r0,#x ; base of x
 mov r1,#sum
 ldr r2,[r1]
 mov r3,#0 ; r3 is i
for: ldr r4,[r0,r3,lsl #2]

add r2,r2,r4
add r3,r3,#1
cmp r3,#10
blt for
str r2,[r1]

halt: b halt

miniARM

In addition to instructions and labels,
assemblers also allow for certain “directives”,
like “.word” and “.space” that initialize memory,
allocate space, and set the address where
instructions should be loaded.

09/10/2018 Comp 411 - Fall 2017

Next time

We’ll write more Assembly programs

Still some loose ends

● Multiplication? Division? Floating point?

5

09/19/2018 Comp 411 - Fall 2018

Assembling the last few bits

● Multiplication
● Division
● Block transfers
● Calling procedures
● Usage conventions

6

Need to get back in stride… Expect some
schedule changes to accomedate Florence.

Friday’s class meeting will be part Lecture,
part Lab.

Problem Set #1 is due before midnight (9/19)

09/19/2018 Comp 411 - Fall 2018

SOme “oDD” instructions

The ARM multiply instruction was kind of an afterthought.
It is “shoe-horned-in” using unused R-type encodings.

7

000 0 0 0 A S Rd1110 Rn RmR type:

4 3 4 1 4 4 4 4

Rs 1 0 0 1

if A == 0
MUL Rd,Rm,Rs ; Rd = Rm*Rs

if A == 1
MLA Rd,Rm,Rs,Rn ; Rd = Rm*Rs+Rn

You may recall that
R-type instructions with
included shifts always
required bit 4 to be “0”.
If bit 4 is a “1”, several new
instructions emerge.

Also, notice that for some odd reason, they
swapped the meaning of the Rd and Rn fields

All operands of multiply
instructions are assumed
to be 2’s-complement
integers.

09/19/2018 Comp 411 - Fall 2018

Division, not one

ARMv7 does not provide a DIVIDE instruction. Reasons?

1. Divisions often require multiple cycles
2. Integer divisions provide two results,

a quotient and a remainder
3. Divisions by known constants can be

implemented via multiplication and shifts
4. In floating point 1/y is easy to compute,

so the product x/y = x*(1/y) is often
the implementation of choice

5. Usually implemented as a function.

8

09/19/2018 Comp 411 - Fall 2018

Another “oDD” instruction

ARM also provides an instruction that swaps the contents
of registers with a memory location.

9

000 1 0 B 0 0 Rn1110 Rd RmR type:

4 3 4 1 4 4 4 4

0 0 0 0 1 0 0 1

SWP Rd,Rm,[Rn] ; Rd <-- Memory[Rn]
 ; Memory[Rn] <-- Rm

Swap is used to implement
synchronization primitives
that are used by multiple
processors and threads.
The instruction is “atomic”

Rd and Rn are back in their usual places

The “B” bit when “0”
swaps a word, and when
“1”, it swaps a byte

09/19/2018 Comp 411 - Fall 2018

Block Transfers

Arm provides a useful instruction for storing multiple registers into
memory sequentially. It shares some commonality with the LDR and
STR instructions.

10

100 L Rn1110 Register VectorB type:

4 3 1 1 1 1 1 4 16

10UP

L P U Instruction

1 0 1 LDMFD Rn!,{list of regs} ; save regs to increasing addresses

0 1 0 SRMFD Rn!,{list of regs} ; load regs from decreasing addresses

Examples:
SRMFD SP!, {R4,R5,R6,LP}

...
LRMFD SP!, {R4,R5,R6,PC}

09/19/2018 Comp 411 - Fall 2018

Conditional Execution

Recall how branch instructions could be executed conditionally, based on the
status flags set from some previous instruction. Also recall that, while
condition flags are generally set using CMP or TST instructions, many
instructions can be used to set status flags. Actually, there is full symmetry.
Most instructions, in addition to branches can also be executed conditionally.

11

11

101 LCond Imm24B type:

0000 - EQ - equals
0001 - NE - not equals 1000 - HI - higher (unsigned)
0010 - CS - carry set 1001 - LS- lower or same (unsigned)
0011 - CC - carry clear 1010 - GE - greater or equal (signed)
0100 - MI - negative 1011 - LT - less than (signed)
0101 - PL - positive or zero 1100 - GT- greater than (signed)
0110 - VS - overflow 1101 - LE- less than or equal (signed)
0111 - VC - no overflow 1110 - “” - always

010 L RnCond Rd Imm12D type: 00U1

011 L RnCond RdX type: 00U1 RmShift L
A

0

000 Opcode S RnCond Rd RmR type: Shift L
A

0

001 Opcode S RnCond Rd Imm8RotateI type:

09/19/2018 Comp 411 - Fall 2018

Example of Conditional Execution

CMP R3,R4 ; if (i >= j)
BLT else ;
SUB R0,R3,R4 ; x = i - j;
B endif ; else

else: SUB R0,R4,R3 ; x = j - i;
endif:

12

CMP R3,R4 ; x = (i >= j) ? i - j : j - i;
SUBGE R0,R3,R4 ;
SUBLT R0,R4,R3 ;

This code is not only
shorter, but it is much
faster. Generally, taken
branches are slower than
ALU instructions on ARM.

09/19/2018 Comp 411 - Fall 2018

Supporting procedure Calls

Functions and procedures are essential components of code reuse.
The also allow code to be organized into modules. A key component
of of procedures is that they clean up behind themselves.

Basics of procedure calling:

1. Put parameters where the
called procedure can find them

2. Transfer control to the procedure
3. Acquire the needed storage for procedure variables
4. Perform the expected calculation
5. Put the result where the caller can find them
6. Return control to the point just after where it was called

13

09/19/2018 Comp 411 - Fall 2018

Register usage conventions

14

By convention, the
ARM registers are
assigned to specific
uses and names. These
are supported by the
assembler, and
higher-level languages.
We’ll use these names
increasingly. Why have
such conventions?

Register Use

R0-R3 First 4 function arguments.
Return values are placed in R0 and R1.

R4-R10 Saved registers. Must save before using
and restore before returning.

R11 FP - Frame pointer
(to access a procedure’s local variables)

R12 IP - Temp register used by assembler

R13 SP - Stack pointer
Points to next available word

R14 LR - Link Register (return address)

R15 PC - program counter

09/19/2018 Comp 411 - Fall 2018

Basics of Calling
main: ldr r0,x
 ldr r1,y
 bl GCD
 str r0,z
halt: b halt

x: .word 35
y: .word 55
z: .word 0

GCD: cmp r0,r1
 bxeq lr
 subgt r0,r0,r1
 sublt r1,r1,r0
 b GCD

15

int gcd(a,b) {
 while (a != b) {
 if (a > b) {
 a = a - b;
 } else {
 b = b - a;
 }
 }
 return a;
}

int x = 35;
int y = 55;
int z;

z = gcd(x, y);

Here the assembly language
version is actually shorter
than the C/Java version.

miniARM

Greatest Common
Divisor (GCD)--
Doesn’t that require
division? I thought
ARM7 doesn’t have a
division instruction?
Thanks, Euclid!

09/19/2018 Comp 411 - Fall 2018

That was a little too EASY

16

main: ldr r0,x
 bl fact
 str r0,y
halt: b halt

x: .word 5
y: .word 0

fact: cmp r0,#1
 bxle lr
 mov r4,r0
 sub r0,r0,#1
 bl fact
 mul r0,r0,r4
 bx lr

int fact(x) {
 if (x <= 1)
 return x;
 else
 return x*fact(x-1);
}

int x = 5;
int y;

y = fact(x);

This time, things are really messed up.

The recursive call to fact() overwrites
the value of x that was saved in R4.

To make a bad thing worse,
the LR is also overwritten.

I knew there was a reason
that I avoid recursion.

miniARM

09/19/2018 Comp 411 - Fall 2018

Next Time

● Stacks
● Contracts
● Writing

serious
assembly
code

17

