BraNCH TNSTRVUCTIONS Il

_—
Standard branch instructions, B<sufFix> and BL <sufFix>, change the PC based on the

PCR. The hext instruction's address is found on addinﬁ a 24-bit signed 2's complement
immediate value mul+iplied by 4 to the PC+8, giving a ronge of +/- 32 Mbytes. Larger

branches use the BX< ix> instruction, where the next instruction's address is frrom
a reaierer.
4 3 1 24
B type:| Cond 101 | L Imm24
R type: | Cond 000 |1 010 1111 1111 1111 0001 Rn
+ 000 £Q | If the condiion is true, the PC is
- - equals
0001-NE - notequals changed by either adding the
0010-CS - carry set immediate value to PC+3, or setting
0011-CC - carry clear it +o the contents of Rn.
0100 - MI - negative
0101 - PL - positive or zero
0110-VS - overflow BTW, BX is encoded as a TEQ
—— 0111-VC -no overflow instruction with its S field set o “0”
1000 - HI - higher (unsigned) -
1001 - LS - lower or same (unsigned)
1010 - GE - greater or equal (signed) ‘
1011 - LT - less than (signed)
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)
1110 - “” - always

09/10/2.018 Comp 4l - Fall 2017 |

BRANCH EXAMPLES

A— W some previous CMP instruction had a non-zero result (ie. making
Bne else /g the "Z" bit O in the PSR), then this instruction will cause the PC to be
loaded with the address having the label ‘else".
BLe fUI’]C A— I some previous CMP instruction set the 'Z' bit in the PSR, then this
9 /g nstruction wil cause the PC to be loaded with the address having the

label *Func’, and the address of the Following instruction will be saved
in Ri4.

A ‘Always' loads the PC with the contents of Ri4. This is called an
B X I_ R I *uncondifiona branch
NOTE: ARM assemblers are “case-insensitive”
— with regard to instruction mneumonics.
I am mixing upper and lower case here {0 emphasize
the <suffix> component of the instruction.

. A An infinite loop.
loop: B loop /E BTW: This instruction is encoded as: OXEAFFFFFE
101 o[111111111111 1111 1111 1110
"always"\ig g;m\ig X/ﬁiﬂiﬂfiﬁi X/

09/10/2.018 Comp 41 - Fall 2017

1110

~2, which implies
PC+8-2%4 =PC

=\
A SIMPLE PROGRAM Th

; Assembly code for; sum = 0;
; for (i =0; i <= 10; i++) D
: sum = sum + 1;
main: mov R1, #0 * R1T 1s 1
mov RO, #6 * RO 1s sum
loop: add RO, RO, R1 sum = sum + 1
add R1,R1, #1 © 14+
Cmp R1;#1@ ; 1 <= 1@ You will notice that the miniARM
ble loop ?i'::‘.':i:if::‘:i,l’,f‘i:;ﬁ;‘%m
halt: b halt words in memory, must be preloaded

with $wo addresses, the first is an
iniHial value for RI3 (SP), and the second
is an initial value for RIS (PC)

‘/

09/10/2.018 ComP 41 - Fall 2017

LoAD AND STORES (N ACTION

An example of how loads and stores are used to access arrays.

Java/C.- Assembly:
int x[10]; X : .word 1,
int sum = 9; sum: .word ©
for (int 1 = ©; i < 10; i++) Mmain: mov
sum += x[1i]; mov
1ldr
mov
In addition 4o instructions and labels, .
assemblers alsc allow for certain “directives”, for: 1dr
like “word” and “space” that inHialize memory, add
allocate space, and set the address where
instructions should be loaded. \ add
« cmp
€b blt
str
halt: b

09/10/2.018 Comp 41 - Fall 2017

miniARM

3,5,7,9,11,13,15,17,19

ro, #x ¢ base of x
r1,#sum

r2,[r1]

r3, #06 ' r3 is 1

r4,[r0,r3,1sl #2]
r2,r2,r4

r3,r3, #1

r3,#10

for

r2,[r1]

halt

NEXT TIME

We'll write more A%emla\y programs

SHtill some loose ends

° MuIJriPIicaJrion? Division? Floaﬂnﬂ Poin’r?

09/10/2.018

DILBERT® by Scott Adams

DILBERT: ©1989 United Feature Syndicate, inc.

WHEN 1 STARTED
PROGRAMMING, WE DIDNT
HAVE ANY OF THESE

SISSY “ICONS" AND
*WINDOWS.”

{

>

|
i
é
:

ALL WE HAD WERE ZEROS
AND ONES -- AND
SOMETIMES WE DIDN'T
EVEN HAVE ONES.

1 WROTE AN
ENTIRE
DATABASE
PROGRAM
USING ONLY
ZEROS.

YOU HAD
ZEROS? WE
HAD TO USE
THE LETTER
n'o"l

ComP 41 - Fall 2017

10,80 Jdy

1"d S00°ON 8Z:9

=\
ASSEMBLING THE LAST FEW BITS L]

ALLEN, T KNEW T WAS

GETTING LUCKY WHEN SHE
WHISPERED THOSE 3 MAGIC

BREIER 2013 “cotiscantoons.com

SOME ASSEMBLY |
REQUIRED

—

WORDS TO ME, I~
=] 1 T%-’/

3
d

09/19/2.018

ComP 41 - Fall 2018

S

Multiplication
Division

Block. transfers
Coaliing procedures

UGaﬁe conventions

Need to get back. in stride.. Expect some
schedule changes to accomedate Florence.

Fr‘iday’s class meeting will be part Lecture,
part Lab.

Problem Set #l is due before mialniath (9/19)

-

SOME "6DD” wwsrevecnions ;

The ARM mulJriPIy instruction was kind of an af—’rer”rhouﬂhf
It is ‘shoe-horned-in' using uhused R-type encodingc;.

4 3 4 1 4 4 4 4
R type: 1110 000 O00A |S Rd Rn Rs 1001 Rm
A 4 Also, notice that for some odd reason, they
You may recall that } swapped the meaning of the Rd and Rn fields
R-type instructions with
included shifts always

required bit 4 to be ‘0"
I bit 4 is a ', severa new
instructions emerge.

Al operands of multiply \

e X (if A ==
integers. MUL Rd,Rm,RS ’ Rd = Rm*Rs
if A ==
_ MLA Rd,Rm,Rs,Rn ; Rd = Rm*Rs+Rn

09/19/2.018 Comp 4l - Fall 2018 -

P\
DIVISION, NOT ONE 11

S
ARMv7 does not Provicle a DIVIDE instruction. Reasons?
. Divisions often require multiple cycles
2. |n+eae\f divisions Provi?le two results, g:?::nt—)_z,z) ?“133
a quotient ond a remainder 0
ividen 48
3. Divisions Iay known constants can be plvidend 32
imPIemenJred via mu|+iP\ica+ion ond shifts ﬁ

Remainder ——> 7/

© calculatorSoup.com

4. |n Ploaﬁng point I/y is easy to compute,
so the Proclchr x/y = x*(l/y) is often
the implementation of choice

5. Usually implemented as a function

09/19/2.018 Comp 4l - Fall 2018 8

ANOTHER "6DD” INSTRUCTION M

ARM also Providec; an instruction that swaps the contents
ofF registers with a memory location

4 3 4 1 4 4 4 4
Rtype:| 1110 | 000 | 10B0 |0| Rn Rd | 0000 |[1001| Rm

Swap is used to implement
synchronizaﬁon primitives
that are used by multiple
processors and threads.
The instruction is ‘atomic"

}; Rd and Rn are back in their usual places

The "B* bit when ‘0' _
swaps a word, and when ./

¥, i swaps a byte SWP Rd,Rm, [Rn] ; Rd <-- Memory[Rn]
* Memory[Rn] <-- Rm

09/19/2.018 Comp 41 - Fall 2018

BLOCK TRANSFERS Il

—

Arm Provides a useful instruction for storing multiple registers into
memory sequentially. It shares some commonality with the LDR and
STR instructions.

4 3 11 11 1 4 16
B type:| 1110 100 (P|{U[O|1]|L Rn Register Vector

L P | U | Instruction
1 0 1 | LDMFD Rn!, {list of regs} ;save regs to increasing addresses

O | 1 O SRMFD Rn!,{list of regs} ; load regs from decreasing addresses

Examples:

SRMFD SP!, {R4,R5,R6,LP}

LRMFD SP!, {R4,R5,R6,PC}

09/19/2.018 Comp 4l - Fall 2018 10

P
CONDITIONAL EXECUTION 11

—

Recal how branch instructions could be executed cor\diﬂonally, based on the
status Plaas set From some previous instruction. Also recall that, whie
condition Plaas are generaly set using CMP or TST instructions, many
instructions con be used to set status P\aﬁs. Actually, there is £l symmetry.
Most instructions, in addition to branches can dlso be executed concfrﬁonall)/.

R type: | Cond 000 Opcode S Rn Rd Shift | L]0/ Rm
| type: | Cond 001 Opcode S Rn Rd Rotate Imm8
D type:| Cond 010 |1|U|O0|O|L Rn Rd Imm12
X type:| Cond 011 (1 |1U|0|0]|L Rn Rd Shift k 0| Rm
B type:| Cond 101 | L Imm24
0000 - EQ - equals
0001 - NE - not equals 1000 - HI - higher (unsigned)
0010 - CS - carry set 1001 - LS - lower or same (unsigned)
0011-CC - carry clear 1010 - GE - greater or equal (signed)
~) 0100 - MI - negative 1011 - LT - less than (signed)
0101 - PL - positive or zero 1100 - GT- greater than (signed)
0110 - VS - overflow 1101 - LE- less than or equal (signed)
\01 11 - VC - no overflow 1110 - “” - always

09/19/2.018 Comp 4l - Fall 2018 I

=\
EXAMPLE OF CondiTionaL Execunion |||

else:
endif:

09/19/2.018

CMP
BLT
SUB
B

SUB

CMP
SUBGE
SUBLT

R3,R4
else

RO, R3, R4
endif
RO, R4, R3

R3, R4
RO, R3,R4
RO, R4,R3

)

;o if (4 >= j)
X =1-173;
else
X =3 -1,

X:(i>=j)?i—j:j‘

Comp 41 - Fall 2018

/

U4

This code is not only
shorder, but i is much
faster. Generally, $aken
branches are slower than

ALV instructions on ARM.

1,

—

=\
SUPPORTING PROCEDURE CALLS L]

S

Fuhctions and Procedurecs are essential components of code reuse.
The adlso dlow code to be oraanizecl into modules. A key component
ofF of Proceclures is that they clean up behind themselves.

[)
Basics of procedure cdlling;

. Put parameters where the

called procedure can Find them
Transker control to the procedure
Acquire the needed storage for procedure variables
Perform the expected calculation

Put the result where the caller can find them

© Ul & w

Return control to the point just ofter where it was called

09/19/2.018 Comp 4l - Fall 2018 13

REGISTER USAGE CONVENTIONS N

By convention, the

Register Use

ARM reﬂI9+8\f'9 are RO-R3 First 4 function arguments.
. d r_ Return values are placed in RO and R1.
assigne to speciric
d R4-R10 Saved registers. Must save before using
uses and hames. These and restore before returning.
are GUPPOY'+8C‘ by the R11 FP - Frame pointer
(to access a procedure’s local variables)
assembler, and
) R12 IP - Temp register used by assembler
hlﬂher—level Ianﬂuaaes.
R13 SP - Stack pointer
We'll use these names Points to next available word
]ncr-ea.;’"qa\Y Why have R14 LR - Link Register (return address)
such COI’IVGI’H‘]OF\‘;? R15 PC - program counter

09/19/2.018 Comp 4l - Fall 20186 14

Basics oF CALLING

main:
int gcd(a,b) { miniARM
while (a !'= b) {
if (a > b) {
a=a-b: halt:
Greatest Commen
re 136_ { b - a Divisor (GCD)— .
- Doesn't that require X.
} 2 dwision? I thought :
} ARMT doesn't havea *
return a; division instruction? v
} Thanks, Euclid!
int x = 35; GCD:
int y = 55;
nt z, Here the assembly lanquage
: ion is actually shorter
z = ged(x, y); ther
an the C/Java version.
Ny
09/19/2.018 Comp 4l - Fall 20186

1dr
1dr
bl

str
b

.word 35
.word 55
.word ©

cmp
bxeq
subgt
sublt
b

ro, X
ri,y
GCD

ro, z
halt

ra, ri

1r

ro, ro, ri
ri1,r1,ro@
GCD

THAT WAS A LITTLE TOo EASY

main:

halt:

fact:

09/19/2.018

1dr
bl

str
b

.word
.word

cmp
bxle
mov
sub
bl
mul
bx

Ll

—
ro, x int fact(x) {
fact if (x <= 1)
ac return x:

ro,y else
halt return x*xfact(x-1);

}
5 int x = 5; .

int y; miniARM
0

y = fact(x);
ro, #1
1r This time, things are really messed up.

The recursive call fo fack() overwrites
r4) re the value of x that was saved in R4.
re) re) #1 A To make a bad thing worse,
fa ct _‘ the (R is dlso overwriHen.
re, re, r4 I knew there was a reason
1 that T aveid recursion.
r

Comp 41 - Fall 2018

NEXT TIME

09/19/2.018

Comp 41 - Fall 2018

Stacks
Contracts
\Nri’rina
serious
aseemb\y
code

