P
ARM SHIFT OPERATIONS Th

A novel Feature of ARM is that all data-processing instructions can
include an optional ‘shit-t', whereas most other architectures have
separate shitt instructions. This is actudlly very useful as we wil see
later on. The key to shilting is that 8-bit tield between Rd and Rm

4 3 4 1 4 4 5 2 1 4
R type: | 1110 000 | Opcode | S Rn Rd Shift (L]0 Rm
Shift Type
00 - logical left
01 - logical right
. 10 - arithmetic right
Shift 11 - rotate right
Amount

0-31 bits

09/10/2.018 ComP 41 - Fall 2017

LEFT SHIFTS ﬁ

Left shifts ef—f—ecﬂvely multiply the contents of a
register Iay 2° where s is the shirt amount.

MOV RO,RO,LSL 7

RO before: | 9000 0000 0000 0000 0OOOB 0OBO 00O 0111 (=7
=
RO after: | 9000 0000 0000 0000 0000 0011 1000 0000 [=7 *2" =896

Shifts can adlso be aPPlied to the second operand of any
data processing instruction

ADD R1,R1,R0O,LSL 7/

09/10/2.018 Comp 4 - Fal 2017 2

o~
RIGHT SWIETS 11

S

Right shifts behave like c/ividirlg the contents of a register
by 2° where s is the shift amount, if you assume the
contents of the real;’rer are unsigned

MOV RO,RO,LSR 2

RO before: 0000 00VO 0VBO VOO BOPO B100 0OVB 0060 | = 1024
—— 3
RO after: D0O0O 000D 0DOO 0PDO 0ODO DOO1 DOOO VOO | = 1024 /22 =256

09/10/2.018 Comp 4l - Fall 2017 3

P
ARITHMETIC RIGHT SHIFTS Th

Arithmetic right Shifts behave like c/ivic/ing the contents of
a register by 2° where s is the shift amount, if you
assume the contents of the reaierer are signec{

MOV RO, RO,ASR 2

RO before: [1111 1111 1111 1111 1111 1100 0000 0006
—— 3
RO after: | 1111 1117 1111 1111 1111 1111 0000 0000

-1024

-1024 | 22 = -256

This is Java's ">>>" operator,
LSR is “>>" and LSL is "<<”
/

U4

09/10/2.018 Comp 41 - Fall 2017

P
RATATE RIGHT SWIETS 1]

KoJraJrina shifts have no arithmetic analoay. However, +hey don't lose
bits like both logjcal and arithmetic shifts. We saw rotate right shif+
used for the -type "immediate" value earlier.

MOV RO, RO,ROR 2

RO before: | 90600 0000 0006 0000 0BOO BOBO 00O BT111|(=7

RO after: iee 0000 00GO 00O 6RO 00RO BB 6001 | =-1,073,741,823

Java doesn't have an
/apera'lor for this one.

\Nhy no rotate left shifFt? o

® Ron out of er\codings?
o Almost anything Rotate lefts can do ROR can do as well

09/10/2.018 Comp 4l - Fall 2017 5

09/10/2.018

More on Immediates

Readin@ and Writing Memory
Registers holding addresses
Pointers

Chanainﬂ the PC

O l_ooPcs
o Labels
O Calliha Functions

Comp 41 - Fall 2017

WHY BUILT-IN CONSTANT OPERANDS?

(IMMEDIATES)
4 3 4 1 4 4 4 8
| type: | 1110 001 | Opcode | S Rn Rd Rotate Imm38

e Alternatives? V\lhy hot? Do we have a choice?
O put constants in memory (was common in older instruction sets)

e SMALL constants are used Prequehﬂy (50% of operands)
O IhaC comPiIer' (acc) 52% of ALU oPer'aJrions involve a constant

O In a circuit simulator (spice) 9% involve constants
o e@.,B=B+1;C=W&@xff;A=B—1;

How large of constants
should we allow fore If

. . .) +hey are oo big, we won't
® [SA Design Principle: have enough bis leflover

for the instructions or

Make 'H'Te common caseé eagy / operands.
Make the common case fast

09/10/2-018 Comp 41 - Fall 2017

MOVES AND ORS ﬁ

¢

We can load any 32-bit constant using a series of instructions,
one—loere ot a time.

MOV RO, #85 ; Ox55 in hex
ORR RO, RO,#21760 ; Ox5500 in hex
ORR RO, RO, #5570560 ; Ox550000 in hex

ORR RO,RO,#1426063360 ; 0x55000000 in hex

But there are often better, Faster, ways to lood constants, and the
assembler can Piﬁure out how for you, even it it needs to generate multiple
instructions.

MOV RO,=1431655765 ; Ox55555555 in hex

Note that an
equal sign Is used

e
here rather than~
a hashtag, gb

09/10/2.018 Comp 4l - Fall 2017 8

P
LOAD AND STORE INSTRUCTIONS L]

—

ARM is a 'Load/Store architecture' That means that ohly a special
class ok instructions are used to reference data in memory. As a
rule, data is loaded into registers First, then processed, and the

results are written back using stores. _oad and Store instructions

have their owh format-

4 3 11 11 1 4 4 12
D type:| 1110 010 |1|U[0|0O|L Rn Rd Imm12

2

4~ Why does a *I” imply an immediate operand for
ALV {ypes, but “0° for Loads and Stores?

4 3 171 11 1 4 4 5 2 1 4
X type: 1110 011 11U|0]|O0|L Rn Rd Shift k 0 Rm
IfV is “0" subtract Lis a "I" for a Load The same “shif}” options
offset from base, ™ ‘ \' - and "0” for a Store +hu: wems:w for +:z+du"|"a

otherwise add them. % & & processing instructions

09/10/2.018 Comp 4l - Fall 2017 9

LoAaD AND STORE OPTIONS

ARM’'s load and store instructions are versatie. They Provicle a wide
ronge of addressiha modes. Only a subset is shown here.

LDR

STR

LDR

STR

LDR

STR

_ A— Rd Memory[Kn+ immi2.]
Rd, [Rn,#1mm12] /g Rd is loaded with the contents of memory at the address found by
adding the contents of the base regster to the supplied constant

A~ MemorylRI - 4] — RO
RO, [R1, #-4] /g omgﬁcmbeememaaeaor;uwmedagwmawanegmwesagn

R2, [R3]/xg/|3noom9e+isspeci$iedﬁisassumed+obezero

A— The contents of a second register can be used as an
R4, [R5'R6]/g oFP;drdherMnacondaﬁ(ushg%X&ypeForm)

N A— Register offsets can be either added or subtracted, like
R4, [R5, -R6 | Ay Redvter

A— Register offsets can adlso be optiondlly shifted, which is
R4, [R5,R4,LSL 2] > 3r2a+$orhdexh3arr2y:! optionally w

09/10/2.018 Comp 41 - Fall 2017

CHANGING THE PC

Ll

The Program Counter is 9Pecial re@ic;Jrer (R15) that
tracks the address of the next instruction to be fetched.

There are special instructions For changing the PC.

4 3 1 24
B type:| Cond 101 | L Imm24
; 2
888? - ﬁg - eqttlalé » Branches are offen
- - not equals-

0010 -CS - carry set The " br} causes execu-l-ecl condi'l'wnally
0011-CC - carry clear based on the PSR state
0100-MI - negative PC+4 4o be set by some previous
0101 - PL - positive or zero . saved In instruction like CMP o
0110-VS - overflow ‘. LP (Rl'-l) InsTrUction like r

L _J 0111-VC - no overflow . TST.
1000 - HI - higher (unsigned) . /
1001 - LS - lower or same (unsigned) \ _—
1010 - GE - greater or equal (signed) \. ~‘
1011 - LT - less than (signed) ?
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)
1110 - “” - always

09/10/2.018 Comp 4l - Fall 2017 I

BRANCH VSING REOGTISTERS

Ll

—

The standard Branch instruction has a limited range, the 24-bit Gianed
2's complement immediate value is multiplied by 4 and added to the

PC+8, giving a range of +/- 32 Mberec;. Larger bronches make use of

addresses previously loaded into a register using the BX instruction.

4 3 21 4
R type: | Cond 000 1T 6010 1111 1111 1111 0001 Rn
+ (0000-EQ -equals

88% i gE 22;’:;“5“;'3 If the condition is true, the PCis
0011-CC - carry clear loaded with the contents of Rn.
0100 - MI - negative
0101 -PL - positive or zero
0110 - VS - gve:'fll‘;w RTW, BX is encoded as a TEQ

) 0111-VC -no overflow instruction with Hs S field set 4o “0”
1000 - HI - higher (unsigned) _—
1001 - LS - lower or same (unsigned)
1010 - GE - greater or equal (signed) ‘
1011 - LT - less than (signed)
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)
1110 - “” - always

09/10/2.018 - Comp 4l - Fall 2017

BRANCH EXAMPLES

A— I some previous CMP instruction had

a non-zero result (ie. maki

BNE else /g +he'Z_'bi-l-O'n+hePSK),+hen+hi9h9+rucﬁonwﬂlcmgeﬂ-\ePC-::?be
loaded with the address having the label ‘else".

BEQL funC /,\E/I‘PsomepreviousCMPhsh’ucﬁonse‘l'

the ‘Z* bit in the PSR, then +his

instruction will cause the PC to be loaded with the address having the
label ‘Func’, and the address of the FolloWing instruction wil be saved

in Ri4.

A— Loads the PC with the contents of Ri4-
BX LR X

loop: B loop - gt o

/E BTW: This instruction is encoded as: OXEAFFEFFE

1110

111111111111 1111 1111 1110

101 | O
“always” ___ ('Y / B-lype ___ ('Y / \'

AT &

09/10/2.018 Comp 41 - Fall 2017

~2, which implies

return address PC+ 8 -2%4 =PC

Don't save the \
— —
At?

=\
A SIMPLE PROGRAM L]

- e

Assembly code for

* sum = 0;

for (i = ©; 1 <= 10; i++)
, sum = sum + 1;

- e

MOV R1, #0 » R1 is 1
MOV RO, #0 * RO 1s sum
loop: ADD RO, RO, R1 sum = sum + 1
ADD R1,R1, #1 © 14+
CMP R1,#10 i <= 10
BLE loop
halt: B halt

09/10/2.018 Comp 4l - Fall 2017 14

-

LOAD AND STORES IN ACTION Al

An example of how loads and stores are used to access arrays.

Java/C.- Assembly:

int X[1@], .align 4

int sum = 6; X : .space 40
sum: .word ©
for (int 1 = 0; i < 10; i++)
sum += x[i]; MOV RO, =x : base of x
MOV R1, =sum
LDR R2, [R1]
MOV RS3, #0 ' R3 is 1
for: LDR R4, [RO,R3 LSL 2]
ADD R2,R2,R4
ADD R3, R3, #1
CMP R3, #160
BLT for
STR R2, [R1]

09/10/2.018 Comp 41 - Fall 2017 5

NEXT TIME

We'll write more A%emla\y programs

SHtill some loose ends

° MuIJriPIicaJrion? Division? Floaﬂnﬂ Poin’r?

09/10/2.018

DILBERT® by Scott Adams

DILBERT: ©1989 United Feature Syndicate, inc.

WHEN 1 STARTED
PROGRAMMING, WE DIDNT
HAVE ANY OF THESE

SISSY “ICONS" AND
*WINDOWS.”

{

>

|
i
é
:

ALL WE HAD WERE ZEROS
AND ONES -- AND
SOMETIMES WE DIDN'T
EVEN HAVE ONES.

1 WROTE AN
ENTIRE
DATABASE
PROGRAM
USING ONLY
ZEROS.

YOU HAD
ZEROS? WE
HAD TO USE
THE LETTER
n'o"l

ComP 41 - Fall 2017

10,80 Jdy

1"d S00°ON 8Z:9

