
08/31/2017 Comp 411 - Fall 2018

A Bit of History
There is a commonly recurring debate over whether
“data” and “instructions” should be mixed. Leads to two
common flavors of computer architectures

1

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Data
Memory

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Unified
Memory

Program
Mem

“Harvard” Architecture

“Von Neumann” Architecture

08/31/2017 Comp 411 - Fall 2018

Harvard Architecture

Instructions and data do not/should not interact.
They can have different “word sizes” and exist
in different “address spaces”

- Advantages:
• No self-modifying code (a common hacker trick)
• Optimize word-lengths of instructions for control and data for applications
• Higher Throughput (i.e. you can fetch data and instructions from their
memories simultaneously)

- Disadvantages:
• The H/W designer decides the trade-off between program and data sizes
• Hard to write “Native” programs that generate new programs
(i.e. assemblers, compilers, etc.)

• Hard to write “Operating Systems” which are programs that at various points
treat other programs as data (i.e. loading them from disk into memory,
swapping out processes that are idle)

2

Howard Aiken:
Architect of the
Harvard Mark 1

08/31/2017 Comp 411 - Fall 2018

Von Neumann Architecture

Instructions are just a type of data that
share a common “word size” and “address
space” with other types.

- Most common model used today, and what we assume in 411
- Advantages:

• S/W designer decides how to allocate memory between data and programs
• Can write programs to create new programs (assemblers and compilers)
• Programs and subroutines can be loaded, relocated, and modified by other
programs (dangerous, but powerful)

- Disadvantages:
• Word size must suit both common data types and instructions
• Slightly lower performance due to memory bottleneck (mediated in modern
computers by the use of separate program and data caches)

• We need to be very careful when treading on memory. Folks have taken
advantage of the program-data unification to introduce viruses.

3

John Von Neumann:
Proponent of unified
memory architecture

08/31/2017 Comp 411 - Fall 2018

Concocting an Instruction Set

4

move flour,bowl
add milk,bowl
add egg,bowl
move bowl,mixer
rotate mixer
...

Nerd Chef
at work.

First Lab this time next week..
9:00am-11:00am

08/31/2017 Comp 411 - Fall 2018

INstructions are Simple

● Computers interpret “programs” by translating them from the
high-level language where into “low-level” simple instructions that it
understands

● High-Level Languages
▪ Compilers (C, C++, Fortran)
▪ Interpreters (Basic, Ruby, Lua, Python, Perl, JavaScript)
▪ Hybrids (Java)

● Assembly Language

5

x: .word 0
y: .word 0
c: .word 123456

…
LDR R0, [R10, #0] ; get x
SUB R0, R0, #3
LDR R1, [R10, #4] ; get y
LDR R2, [R10, #8] ; get c
ADD R1, R1, R2
MUL R0, R0, R1
STR R0, [R10, #4] ; save y

int x, y;
y = (x-3)*(y+123456)

08/31/2017 Comp 411 - Fall 2018

INstructions are Binary

● Computers interpret “assembly programs” by translating them
from their mnemonic simple instructions into strings of bits

● Assembly Language
● Machine Language

○ Note the “mostly” one-to-one correspondence
between lines of assembly code and
Lines of machine code

6

x: .word 0
y: .word 0
c: .word 123456

...
LDR R0, [R10, #0] ; get x
SUB R0, R0, #3
LDR R1, [R10, #4] ; get y
LDR R2, [R10, #8] ; get c
ADD R1, R1, R2
MUL R0, R0, R1
STR R0, [R10, #4] ; save y

0x00000000
0x00000000
0x0001E240

...

0xE59A0000
0xE2400003
0xE59A1004
0xE59A2008
0xE0811002
0xE0000190
0xE58A0004

08/31/2017 Comp 411 - Fall 2018

A general-Purpose COmputer
The von Neumann Model

Many architectural approaches to the general purpose computer
have been explored. The one upon which nearly all modern computers
is based was proposed by John von Neumann in the late 1940s. Its
major components are:

7

Input/
Output

I/O: Devices for communicating with the outside world.

Central
Processing

Unit

Central Processing Unit (CPU): A device which fetches,
interprets, and executes a specified set of bits
called Instructions.

Main
Memory

Memory: storage of N words of W bits each, where W
is a fixed architectural parameter, and N can
be expanded to meet needs.

My dog knows how to fetch!

He’s said “bit”
before, but not
too much about

“words”

08/31/2017 Comp 411 - Fall 2018

Anatomy of an Instruction

● Computers execute a set of primitive operations called instructions
● Instructions specify an operation and its operands

(arguments of the operation)
● Types of operands: destination, source, and immediate

8

Why do all of the
variables start
with “R”?

CPU’s have a small
number (16-32) of
registers that are
used to hold
variables

ADD R0, R1, R2

ADD R0, R1, #1

Operands
(variables, arguments, etc.)

Source Operands
Destination Operand
Immediate Operand

08/31/2017 Comp 411 - Fall 2018

Meaning of an Instruction

● Operations are abbreviated into opcodes (1-4 letters)
● Instructions are specified with a very regular syntax

○ Opcodes are followed by arguments
○ Usually the destination is next, then one or more source

arguments (This is not strictly the case, but it is generally true)
● Why this order?

Analogy to high-level language like Java or C

9

add R0, R1, R2

int r0, r1, r2;
r0 = r1 + r2;

The instruction syntax provides
operands in the same order as
you would expect in a
statement from a high level
language.

Instead of:

r1 + r2 = r0;

08/31/2017 Comp 411 - Fall 2018

A Series of Instructions

● Generally…
○ Instructions are retrieved sequentially from memory
○ An instruction executes to completion before the next

instruction is started
○ But, there are exceptions to these rules

10

R0:0

R1:6

R2:8

R3:10

Variables
ADD R0, R1, R1

ADD R0, R0, R0

ADD R0, R0, R0

SUB R1, R0, R1

Instructions

What does this
program do?

X 12X 24X 48

X 42

08/31/2017 Comp 411 - Fall 2018

Program Analysis

● Repeat the process treating the variables as unknowns or
“formal variables”

● Knowing what the program does allows us to write down its
specification, and give it a meaningful name

● The instruction sequence then becomes a general-purpose tool

11

R0:w

R1:x

R2:y

R3:z

Variables
ADD R0, R1, R1

ADD R0, R0, R0

ADD R0, R0, R0

SUB R1, R0, R1

Instructions

What does this
program do?

X 2xX 4xX 8x

X 7x

08/31/2017 Comp 411 - Fall 2018

Looping the Flow

● Repeat the process treating the variables as unknowns or
“formal variables”

● Knowing what the program does allows us to write down its
specification, and give it a meaningful name

● The instruction sequence then becomes a general-purpose tool

12

R0:w

R1:x

R2:y

R3:z

Variables
ADD R0, R1, R1

ADD R0, R0, R0

ADD R0, R0, R0

SUB R1, R0, R1

Instructions
X 8x

X 7x

B times7

times7: X 56x

X 49x

X 392x

X 343xAn infinite loop

08/31/2017 Comp 411 - Fall 2018

Open Issues in our Simple Model

● WHERE in memory are INSTRUCTIONS stored?

● HOW are instructions represented?

● WHERE are VARIABLES stored?

● What are LABELs? How do they relate to
where instructions are stored?

● How about more complicated data types?
○ Arrays?
○ Data Structures?
○ Objects?

● Where does a program start executing?

● When does it stop?

13

08/31/2017 Comp 411 - Fall 2018

The Stored-Program Computer

● The von Neumann architecture addresses these issues as follows:
● Instructions and Data are stored in a common memory
● Sequential semantics: To the PROGRAMMER

all instructions appear to execute in an order,
or sequentially

14

Key idea: Memory holds not only
data, but coded instructions
that make up a program.

Central
Processing

Unit

Memory

Instruction

Instruction

Instruction

Instruction

data

data

data
CPU fetches and executes instructions from memory

• The CPU is a H/W interpreter
• Program IS simply DATA for this interpreter
• Main memory: Single expandable resource pool
- constrains both data and program size
- don’t need to make separate decisions of
 how large of a program or data memory to buy

08/31/2017 Comp 411 - Fall 2018

Anatomy of a von Neumann Computer

15

CPU

MEMORY

registers

operations

…
dest

asel

fn

bsel

Cc’sALU

PC 1101000111011

● INSTRUCTIONS coded as binary data
● PROGRAM COUNTER or PC:

Address of next instruction to execute
● logic to translate instructions into

control signals for data path

+1
R1 ←R2+R3

data

Control
Unit

Data
PathsIn

te
rn

al

st
or

ag
e control

status

instructionsaddressaddress

More about
this stuff

later!

08/31/2017 Comp 411 - Fall 2018

Instruction Set Architecture (ISA)

Encoding of instructions raises some interesting choices…
● Tradeoffs: performance, compactness, programmability
● Uniformity. Should different instructions

○ Be the same size (number of bits)?
○ Take the same amount of time to execute?
○ Trend: Uniformity. Affords simplicity, speed, pipelining.

● Complexity. How many different instructions? What level
operations?
○ Level of support for particular software operations: array

indexing, procedure calls, “polynomial evaluate”, etc
○ “Reduced Instruction Set Computer”

(RISC) philosophy: simple instructions, optimized for speed
● Mix of Engineering & Art…

16

08/31/2017 Comp 411 - Fall 2018

ARM7 Programming Model
A representative RISC machine

In Comp 411 we’ll use a subset of
the ARM7 core Instruction set as
an example ISA.

ARM7 uses byte memory
addresses. However, each
instruction is 32-bits wide, and
must be aligned on a multiple of
4 (word) address. Each word
contains four 8-bit bytes.
Addresses of consecutive
instructions (words) differ by 4.

17

Processor State
(inside the CPU)

Main Memory

0123

(4 bytes)

32 bit “words”

031

next instruction

0
4
8
16

20

Addresses
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (SP)
R14 (LR)
R15 (PC)

CPSR

Fetch/Execute loop:
● fetch Mem[PC]
● PC = PC + 4†

● execute fetched instruction
(may change PC!)

● repeat!

08/31/2017 Comp 411 - Fall 2018

ARM Memory Nits

● Memory locations are addressable in different sized chunks
○ 8-bit chunks (bytes)
○ 16-bit chunks (shorts)
○ 32-bit chunks (words)
○ 64-bit chunks

(longs/doubles)
● We also frequently need

access to individual bits!
(Instructions help with this)

● Every BYTE has a unique address
(ARM is a byte-addressable machine)

● Most instructions are one word

18

012 3
4567

word
Addr

0:
4:
8:
12:

891011
12131415

byte3 byte2 byte1 byte0

short2 short0

long0

long8

31 30 29 … … 4 3 2 1 0

08/31/2017 Comp 411 - Fall 2018

ARM Register Nits

● There are 16 named registers [R0, R1, …. R15]

● The operands of most instructions are registers

● This means to operate on a variables in memory you must:
○ Load the value/values from memory into a register
○ Perform the instruction
○ Store the result back into memory

● Going to and from memory can be expensive
(4x to 20x slower than operating on a register)

● Net effect: Keep variables in registers as much as possible!

● 3 registers are dedicated to specific tasks (SP, LR, PC)
13 are available for general use

19

08/31/2017 Comp 411 - Fall 2018

Basic ARM InstructionS

● Instructions include various “fields” that encode combinations of
OPCODES and arguments

● special fields enable extended functions
● several 4-bit OPERAND fields, for specifying the sources and

destination of the operation, usually one of the 16 registers
● Embedded constants (“immediate” values) of various sizes,

The basic data-processing instruction formats:

20

000 Opcode 0 Rn1110 Rd 00000000 RmR type:

001 Opcode 0 Rn1110 Rd ImmShiftI type:

4 3 4 1 4 4 8 4

4 3 4 1 4 4 4 8

08/31/2017 Comp 411 - Fall 2018

R-type Data Processing

Instructions that process three-register arguments:

21

000 Opcode 0 Rn1110 Rd 00000000 RmR type:

4 3 4 1 4 4 8 4

0000 - AND
0001 - EOR
0010 - SUB
0011 - RSB
0100 - ADD
0101 - ADC
0110 - SBC
0111 - RSC
1000 - TST
1001 - TEQ
1010 - CMP
1011 - CMN
1100 - ORR
1101 - MOV
1110 - BIC
1111 - MVN

ADD R0, R1, R3

 0xE0810003

Is encoded as:
1110 0000 1000 0001 0000 0000 0000 0011

Simple R-type
instructions follow the
following template:

OP Rd, Rn, Rm
Later on we’ll introduce
more complex variants of
these “simple” R-type
instructions.

08/31/2017 Comp 411 - Fall 2018

I-type Data Processing

22

Instructions that process one register and a constant:

22

001 Opcode 0 Rn1110 Rd Imm8RotateR type:

4 3 4 1 4 4 4 8

0000 - AND
0001 - EOR
0010 - SUB
0011 - RSB
0100 - ADD
0101 - ADC
0110 - SBC
0111 - RSC
1000 - TST
1001 - TEQ
1010 - CMP
1011 - CMN
1100 - ORR
1101 - MOV
1110 - BIC
1111 - MVN

RSB R7, R10, #49

 0xE26A7031

Is encoded as:
1110 0010 0110 1010 0111 0000 0011 0001

Simple I-type
instructions follow the
following template:

OP Rd, Rn, #constant
In the I-type instructions the second register
operand is replaced by a constant that is
encoded in the instruction

08/31/2017 Comp 411 - Fall 2018

I-type constants

ARM7 provides only 8-bits for specifying an immediate constant value.
Given that ARM7 is a 32-bit architecture, this may appear to be a
severe limitation. However, by allowing for a rotating shift to be
applied to the constant.

imm32 = (imm8 >> (2 * rotate)) | (imm8 << (32 - (2 * rotate)))

Example: 1920 is encoded as:

23

000111101101
Rotate Imm8

= (30 >> (2*13)) | (30 << (32 - (2*13)))

= 0 | 30 * 64 = 1920

08/31/2017 Comp 411 - Fall 2018

Next Time

● We will examine more instruction types and capabilities
○ Branching
○ Loading from and storing to memory
○ Special instructions

● Result flags
● Processor Status Registers

24

