
08/29/2017 Comp 411 - Fall 2018

IEEE 754 Format (from last time)

● Single precision format

● Example: 52.25 = 00110100.010000002
Normalize: 001.10100010000002 x 2

5

 0 10000100 10100010000000000000000
 0100 0010 0101 0001 0000 0000 0000 0000
 52.25 = 0x42510000

1

S Exponent Significand

1 8 23
The exponent is

represented in bias
127 notation. Why?

(127+5)

08/29/2017 Comp 411 - Fall 2018

IEEE 754 Limits and Features

● SIngle precision limitations
○ A little more than 7 decimal digits of precision
○ Minimum positive normalized value: ~1.18 x 10-38

○ Maximum positive normalized value: ~3.4 x 1038

● Inaccuracies become evident after multiple single
precision operations

● Double precision format

2

08/29/2017 Comp 411 - Fall 2018

IEEE 754 Special Numbers

● Zero - ±0
A floating point number is considered zero when its exponent and
significand are both zero. This is an exception to our “hidden 1”
normalization trick. There are also a positive and negative zeros.

● Infinity - ±∞
A floating point number with a maximum exponent (all ones) is
considered infinity which can also be positive or negative.

● Not a Number - NaN for ±0/±0, ±∞/±∞, log(-42), etc.

3

S 000 0000 0 000 0000 0000 0000 0000 0000

S 111 1111 1 000 0000 0000 0000 0000 0000

S 111 1111 1 non-zero

08/29/2017 Comp 411 - Fall 2018

A Quick Wake-up exercise

What decimal value is represented by 0x3f800000, when
interpreted as an IEEE 754 single precision floating point
number?

4

08/29/2017 Comp 411 - Fall 2018

Bits You can See

The smallest element of a visual display is called a “pixel”. Pixels have
three independent color components that generate most of the
perceivable color range.

● Why three and what are they
● How are they represented in

A computer?
● First, let’s discuss this notion

of perceivable

5

08/29/2017 Comp 411 - Fall 2018

It starts with the Eye

● The photosensitive part of the eye is called
the retina.

● The retina is largely composed of two
cell types, called rods and cones.

● Cones are responsible for color perception.
● Cones are most dense within the fovea.
● There are three types of cones,

referred to as S, M, and L whose
spectral sensitivity varies with wavelength.

6

08/29/2017 Comp 411 - Fall 2018

Why we see in color

● Pure spectral colors simulate all
cones to some extent.

● Mixing multiple colors can stimulate
the cones to respond in a way that
Is indistinguishable from a pure color.

● Perceptually identical sensations are
called metamers.

● This allows us to use just three colors

to generate all others.

7

08/29/2017 Comp 411 - Fall 2018

How colors Are Represented

● Each pixel is stored as
three primary parts

● Red, green, and blue
● Usually around 8-bits

per channel
● Pixels can have individual

R,G,B components or
they can be stored indirectly
via a “look-up table”

8

 8-bits 8-bits 8-bits

3 - 8-bit unsigned binary integers (0,255)
-OR-

3 - fixed point 8-bit values (0-1.0)

08/29/2017 Comp 411 - Fall 2018

Color Specifications

Web colors:

Colors are stored as binary too. You’ll commonly see them
in Hex, decimal, and fractional formats.

9

Name Hex Decimal Integer Fractional

Orange #FFA500 (255, 165, 0) (1.0, 0.65, 0.0)

Sky Blue #87CEEB (135, 206, 235) (0.52, 0.80, 0.92)

Thistle #D8BFD8 (216, 191, 216) (0.84, 0.75, 0.84)

08/29/2017 Comp 411 - Fall 2018

Summary

● ALL modern computers represent signed integers
using a two’s-complement representation

● Two’s-complement integer representations eliminate the
need for separate addition and subtraction units

● Addition is identical using either unsigned and
two’s-complement numbers

● FInite representations of numbers on computers leads
to anomalies

● Floating point numbers have separate fractional and
exponent components.

10

08/29/2017 Comp 411 - Fall 2018

Behind the Curtain

1. Computer organization
2. Computer Instructions
3. Memory concepts
4. Where should code go?
5. Computers as systems

On Friday (8/31) we’ll have a
lecture from 9:05-10:20.

Labs start next Friday (9/7)

11

08/29/2017 Comp 411 - Fall 2018

Computers Everywhere

12

The computers we’re used to

● Desktops

● Laptops

● Tablets

● Embedded processors
○ Cars
○ Light bulbs
○ Mobile phones
○ Toasters, irons, wristwatches, happy-meal toys

08/29/2017 Comp 411 - Fall 2018

Computer Organization

13

∙ Every computer has at least three basic units
- Input/Output

• where data arrives from the outside world
• where data is sent to the outside world
• where data is archived for the long term (i.e. when the lights go out)

- Memory
• where data is stored (numbers, text, lists, arrays, data structures)

- Central Processing Unit
• where data is manipulated, analyzed, etc.

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Memory

Where bits arrive from
and are sent to

Where bits are processed Where bits are stored

08/29/2017 Comp 411 - Fall 2018

Computer Organization (cont)

∙ Properties of units
- Input/Output

• converts symbols to bits and vice versa
• where the analog “real world” meets the digital “computer world”
• must somehow synchronize to the CPU’s clock

- Memory
• stores bits that represent information
• every unit of memory has an “address” and “contents”,

- Central Processing Unit
• besides processing, it also coordinates data’s movements between units

14

keyboard
hard drive

display

adder
shifter
logic

01001010
10001001
11100000

I/O CPU Memory

08/29/2017 Comp 411 - Fall 2018

What sort of “Processing”

A CPU performs low-level operations called INSTRUCTIONS
Arithmetic
- ADD X to Y then put the result in Z
- SUBTRACT X from Y then put the result back in Y
Logical
- Set Z to 1 if X AND Y are 1, otherwise set Z to 0

(AND X with Y then put the result in Z)
- Set Z to 1 if X OR Y are 1, otherwise set Z to 0

(OR X with Y then put the result in Z)
Comparison
- Set Z to 1 if X is EQUAL to Y, otherwise set Z to 0
- Set Z to 1 if X is GREATER THAN OR EQUAL to Y, otherwise set Z to 0
Control
- Skip the next INSTRUCTION if Z is EQUAL to 0

15

08/29/2017 Comp 411 - Fall 2018

Anatomy of an Instruction

Nearly all instructions can be made to fit a common template

OPCODE DESTINATION, OPERAND1, OPERAND2

Issues remaining ...
• Which operations to include?
• Where to get variables and constants?
• Where to store the results?

16

What to do:
ADD
SUB
AND
OR

MOV
CMP
BNE

Where to put
the result

Who to apply
the operation to…

variables, constants, etc..

CPU

Memory

08/29/2017 Comp 411 - Fall 2018

How is Memory Organized

● By now you know memory is a vast collection of bits
● Groups of bits can represent various types of data

○ Integers, Signed integers. Floating-point values, Strings, Pixels
● How do bits get “Grouped”?
● Memory is organized as a vector of bits with indices

called “addresses”

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 ... A vector
of bits

Bits have
indices called
“addresses”

We can address groups
of bits like a vector. For
example the 8-bits from
[12:20], might be the
number “42”.

[]

08/29/2017 Comp 411 - Fall 2018

Addresses are Key!

The need to “address” bits is one of the most important
factors of a computer’s design.

● How many bits will I ever need?
(remember computer representations are finite)

● The size of scratch variables (registers), is more
determined by the need to address bits than the size
of the data-types needed..

● Should we squander address space by giving “every” bit
a distinct address?

● Perhaps we could address bits in more manageble units

18

08/29/2017 Comp 411 - Fall 2018

Memory COncepts

• Memory is divided into “addressable” units,
each with an address (like an array with
indices)

• Addressable units are usually larger than
a bit, typically 8 (byte), 16 (halfword),
32 (word), or 64 (long) bits

• Each address has variable “contents”
• Memory contents might be:

• Integers in 2’s complement
• Floats in IEEE format
• Strings in ASCII or Unicode
• Data structure de jour
• ADDRESSES
• Nothing distinguishes the difference

19

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 0xe3a00000

9 0xe3a0100a

10 0xe0800001

11 0xe2511001

12 0x1afffffc

13 0xeafffffe

14 0x00004020

15 0x20090001

Here we
assume a
32-bit”
“Word”
address-

able
machine

08/29/2017 Comp 411 - Fall 2018

One More Thing

• INSTRUCTIONS for the CPU are
stored in memory along with data

• CPU fetches instructions, decodes
them and then performs their implied
operation

• Mechanism inside the CPU directs which
instruction to get next.

• They appear in memory as a string of
bits that are typically uniform in size

• Their encoding as “bits” is called
“machine language.” ex: 0c3c1d7fff

• We assign “mnemonics” to particular
bit patterns to indicate meanings.

• These mnemonics are called
Assembly language. ex: mov r1, #10

20

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 mov r0, #0

9 mov r1, #10

10 add r0, r0, r1

11 subs r1, r1, #1

12 bne .-2

13 b .

14 0x00004020

15 0x20090001

08/29/2017 Comp 411 - Fall 2018

A Bit of History
There is a commonly recurring debate over whether
“data” and “instructions” should be mixed. Leads to two
common flavors of computer architectures

21

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Data
Memory

I/O
(Input/Output)

CPU
(Central

Processing
Unit)

Unified
Memory

Program
Mem

“Harvard” Architecture

“Von Neumann” Architecture

08/29/2017 Comp 411 - Fall 2018

Harvard Architecture

Instructions and data do not/should not interact.
They can have different “word sizes” and exist
in different “address spaces”

- Advantages:
• No self-modifying code (a common hacker trick)
• Optimize word-lengths of instructions for control and data for applications
• Higher Throughput (i.e. you can fetch data and instructions from their
memories simultaneously)

- Disadvantages:
• The H/W designer decides the trade-off between how big of a program and
how large are data

• Hard to write “Native” programs that generate new programs
(i.e. assemblers, compilers, etc.)

• Hard to write “Operating Systems” which are programs that at various points
treat other programs as data (i.e. loading them from disk into memory,
swapping out processes that are idle)

22

Howard Aiken:
Architect of the
Harvard Mark 1

08/29/2017 Comp 411 - Fall 2018

Von Neumann Architecture

Instructions are just a type of data that
share a common “word size” and “address
space” with other types.

- Most common model used today, and what we assume in 411
- Advantages:

• S/W designer decides how to allocate memory between data and programs
• Can write programs to create new programs (assemblers and compilers)
• Programs and subroutines can be loaded, relocated, and modified by other
programs (dangerous, but powerful)

- Disadvantages:
• Word size must suit both common data types and instructions
• Slightly lower performance due to memory bottleneck (mediated in modern
computers by the use of separate program and data caches)

• We need to be very careful when treading on memory. Folks have taken
advantage of the program-data unification to introduce viruses.

23

John Von Neumann:
Proponent of unified
memory architecture

08/29/2017 Comp 411 - Fall 2018

Next Time

● We examine an instruction set in depth
○ Assembly language
○ Machine language

24

