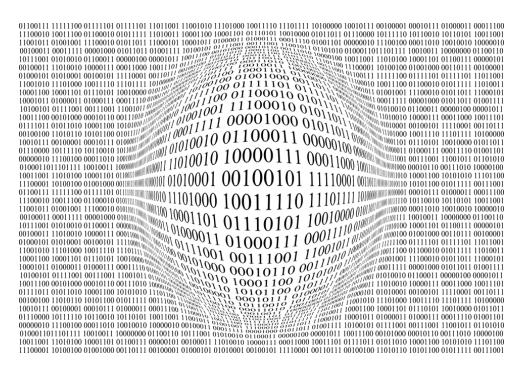
## MORE BINARY REPRESENTATIONS





- Numbers
  - Signed integers
  - Biased integers
  - Fixed-point fractions
  - Floating point
  - "Finiteness"
- Pixels
  - On screen
  - o In files







#### A QUICK REVIEW

What is 0xACE?

In binary:

In octal:

In decimal:

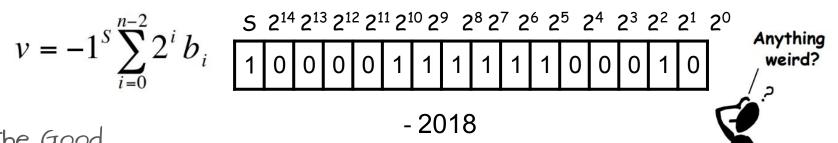




#### SIGNED INTEGERS



- Obvious method is to encode the sign of the integer using one bit.
- · Conventionally, the most significant bit is used for the sign.
- This encoding of signed integers is called "SIGNED MAGNITUDE"



• The Good

• Easy to negate, easy to take absolute value

- The Bad
  - Two ways to represent "0", +0 and -0
  - · Add/subtract is complicated; depends on the signs
- · Not frequently used in practice

With one important exception that we'll discuss shortly
 OB/27/2018
 Comp 411 - Fall 2018

## 2'S COMPLEMENT NOTATION



- The 2's complement representation for signed integers is the most commonly used signed-integer representation.
- It is a simple modification of unsigned integers where the most significant bit is a negative power of 2.

nun:

- Negative numbers seem hard to "read" (for humans)
- Nonsymmetric range:

For 16 bits the range is  $-32768 \le x \le 32767$ 

Comp 411 - Fall 2018

## WHY Z'S COMPLEMENT?

- In the two's complement representation for signed integers, the same binary "addition procedure" (mod 2<sup>n</sup>) works for adding any combination of positive and negative numbers.
- Don't need a separate "subtraction procedure" (carries only, no borrows)  $55_{10} =$
- The "addition procedure" also handles unsigned numbers!
- In 2's complement adding is adding regardless of operand signs.
- You NEVER need to subtract when you use 2's-complement.
- Just form the 2's -complement 45 of the subtrahend Ignore this "carry

| 5510                                   | =   | 000000110111                           |
|----------------------------------------|-----|----------------------------------------|
| 55 <sub>10</sub><br>+10 <sub>10</sub>  | =   | $\frac{000000110111}{0000000001010_2}$ |
| 65 <sub>10</sub>                       | =   | 0000010000012                          |
|                                        |     |                                        |
| 5510                                   | =   | 000000110111,                          |
| 55 <sub>10</sub><br>+-10 <sub>10</sub> | =   | $\frac{000000110111}{1111110110}_2^2$  |
| 45 <sub>10</sub>                       | = 1 | 0000001011012                          |
| s "carry"                              | - % |                                        |



## 2'S COMPLEMENT TRICKS



- Negation changing the sign of a number 1. Invert every bit (i.e.  $1 \rightarrow 0, 0 \rightarrow 1$ ) 2. Add 1
  - Example:  $42_{10} = 000000101010_2$ - $42_{10} = 111111010101_2 + 1 = 111111010110_2$
- Sign-Extension aligning different sized 2's complement integers
  Simply copy the sign bit into higher positions
  - Example: 16-bit version of 42:  $42_{10} = 00000000000101010_{2}$ 16-bit version of -42:  $-42_{10} = 111111111010110_{2}$

## CLASS EXERCISE



#### 10's-complement Arithmetic (so you'll never need to borrow again)

- Step 1) Write down two 3-digit numbers, where you'll subtract the second from the first
- Step 2) Form the 9's-complement of each digit in the second number (the subtrahend)
- Step 3) Add 1 to it (the subtrahend)
- Step 4) Add this number to the first
- Step 5) If your result is less than 1000, form the 9's complement of the sum, add 1, and remember your result is negative, otherwise subtract 1000



| Helpful Table of the<br>9's complement for<br>each digit |
|----------------------------------------------------------|
| 0 → 9                                                    |
| 1 → 8                                                    |
| 2 → 7                                                    |
| 3 → 6                                                    |
| <b>4</b> → 5                                             |
| 5 → 4                                                    |
| 6 → 3                                                    |
| 7 → 2                                                    |
| <b>8</b> → 1                                             |
| 9 → 0                                                    |
|                                                          |

What did you get? Why weren't you taught to subtract this way?08/27/2018Comp 411 - Fall 2018

#### FIXED-POINT NUMBERS



- You can always assume that the boundary between 2 bits is a "binary point".
- If you align binary points between addends, there is no effect on how operations are preformed.

11111101.0110 =  $-2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3}$ = -128 + 64 + 32 + 16 + 8 + 4 + 1 + 0.25 + 0.125= -2.625

#### OR

$$11111101.0110 = -42 \times 2^{-4}$$
  
= -42 / 16  
= -2.625

## REPEATED BINARY FRACTIONS



Not all fractions can be represented exactly using a **finite representation**. You've seen this before in decimal notation where the fraction 1/3 (among others) requires an infinite number of digits to represent (0.3333...).

In binary, a great many fractions that you've grown attached to require an infinite number of bits to represent exactly.

Example: 
$$1/10 = 0.1_{10} = 0.00011..._{2} = 0.19..._{16}$$
  
 $1/5 = 0.2_{10} = 0.0011..._{2} = 0.3..._{16}$   
 $1/3 = 0.3_{10} = 0.01..._{2} = 0.5..._{16}$ 

## FINITE REPRESENTATIONS



- Computers use a finite set of bits (or certain fixed-sized bit clusters) to represent numbers.
- In fact, everything that a realizable computer does is limited by a finite set of bits.
- Through your mastery of mathematics, you've gradually grown used to infinite representations. So much so that finite representations seem odd
- One type of infinity that you've grown used to: Infinite digits

...0000000042.0000000000...

...0000000000.000000000...001000

10000000...0000000000.0

• The concept an infinite supply of zero digits is conceptually elegant, but difficult to physically implement



### SIDE EFFECTS OF BEING FINITE

These examples assume a finite 16-bit representation

• You can "overflow"

 $32767_{10} + 1_{10} = -32768_{10}$ 0111 1111 1111 1111<sub>2</sub> +0000 0000 0000 0001, 1000 0000 0000 0000  $-20000_{10} - 20000_{10} = 25536_{10}$  1011 0001 1110 0000<sub>2</sub> + 1011 0001 1110 0000, 10110 0011 1100 0000 Certain numbers can't be negated  $-32768_{10} = -32768_{10}$ 1000 0000 0000 0000, 0111 1111 1111 1111<sub>2</sub> 0000 0000 0000 0001, + 1000 0000 0000 0000,

08/27/2018

+

## BIAS NOTATION

There is yet one more way to represent signed integers, which is surprisingly simple. It involves subtracting a fixed constant from a given unsigned number. This representation is called "Bias Notation".

$$v = \sum_{i=0}^{n-1} 2^i b_i - Bias$$

Example of Bias 127:

Adding 2 numbers requires a subtraction to fix the result

Why? Monotonicity when viewed as an unsigned number

| 2 <sup>7</sup> 2 <sup>6</sup> 2 <sup>5</sup> 2 <sup>4</sup> 2 <sup>5</sup><br>1001C | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|-------------------------------------------------------------------------------------|-------------------------------------------------------|
| 9 x 2 <sup>4</sup> =<br>6 x 2 <sup>0</sup> =                                        | 144<br>6<br><u>127</u><br>23                          |
| +<br>-                                                                              | 150<br>150<br><u>127</u><br>173 = 46 + 127            |



## FLOATING POINT NUMBERS

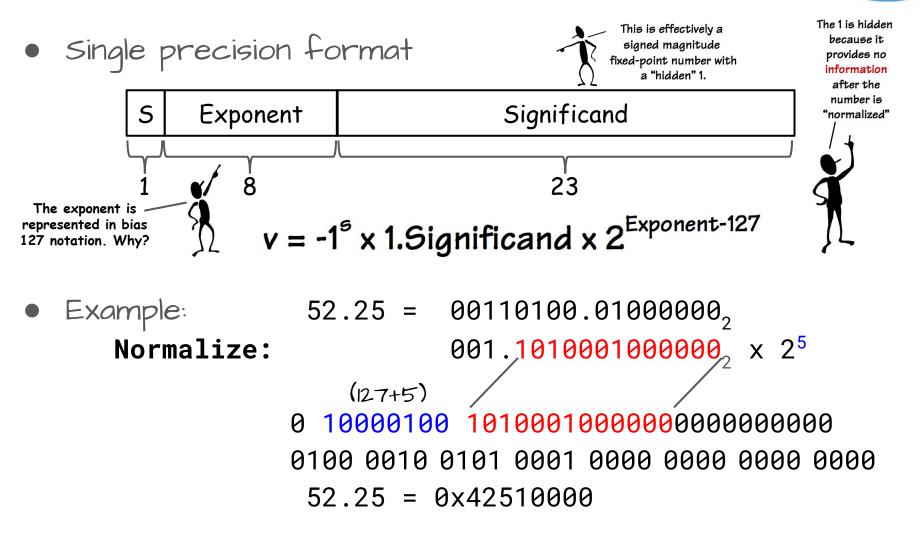


Another way to represent numbers is to use a notation similar to **Scientific Notation**. This format can be used to represent numbers with fractions ( $3.90 \times 10^{-4}$ ), very small numbers ( $1.60 \times 10^{-19}$ ), and large numbers ( $6.02 \times 10^{23}$ ). This notation uses two fields to represent each number. The first part represents a normalized fraction (called the significand), and the second part represents the exponent (i.e. the position of the "floating" binary point).

#### Normalized Fraction $\times 2^{Exponent}$



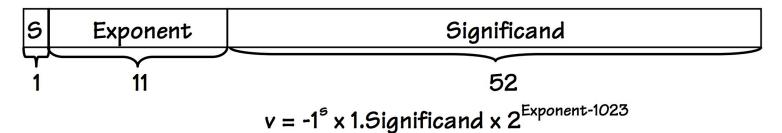
## IEEE 754 FORMAT





## IEEE 754 LIMITS AND FEATURES

- Single precision limitations
  - A little more than 7 decimal digits of precision
  - Minimum positive normalized value: ~1.18 x 10-38
  - $\circ$  Maximum positive normalized value: ~3.4 x 10<sup>38</sup>
- Inaccuracies become evident after multiple single precision operations
- Double precision format

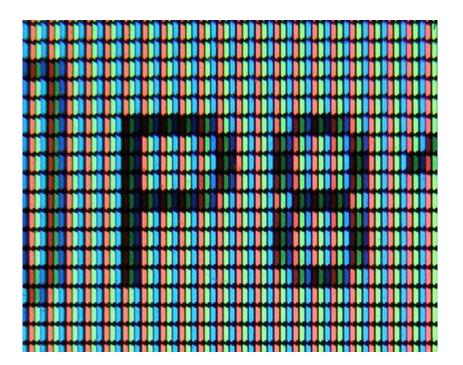


## BITS YOU CAN SEE



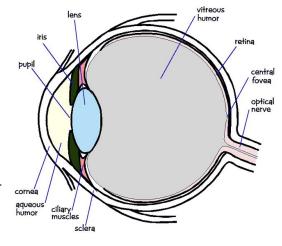
The smallest element of a visual display is called a "pixel". Pixels have three independent color components that generate most of the *perceivable* color range.

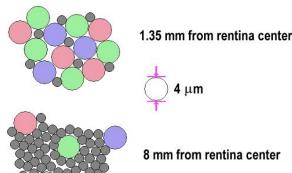
- Why three and what are they
- How are they represented in A computer?
- First, let's discuss this notion of perceivable



### IT STARTS WITH THE EYE

- The photosensitive part of the eye is called the retina.
- The retina is largely composed of two cell types, called rods and cones.
- Cones are responsible for color perception.
- · Cones are most dense within the fovea.
- There are three types of cones, referred to as S, M, and L whose spectral sensitivity varies with wavelength.



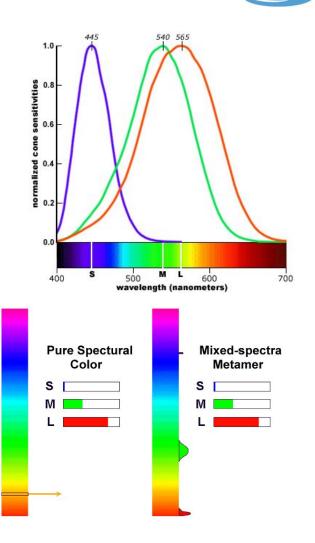






#### WHY WE SEE IN COLOR

- Pure spectral colors simulate all cones to some extent.
- Mixing multiple colors can stimulate the cones to respond in a way that Is indistinguishable from a pure color.
- Perceptually identical sensations are called metamers.
- This allows us to use just three colors to generate all others.

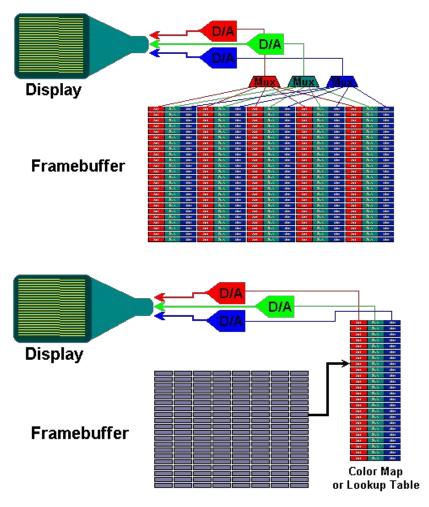




## HOW COLORS ARE REPRESENTED

- Each pixel is stored as three primary parts
- Red, green, and blue
- Usually around 8-bits per channel
- Pixels can have individual
  R,G,B components or
  they can be stored indirectly
  via a "look-up table"

|                                              | 8-bits | 8-bits | 8-bits |  |  |  |
|----------------------------------------------|--------|--------|--------|--|--|--|
| 3 - 8-bit unsigned binary integers (0,255)   |        |        |        |  |  |  |
| -OR-<br>3 - Fixed point 8-bit values (0-1.0) |        |        |        |  |  |  |



### COLOR SPECIFICATIONS



#### Web colors:

| Name     | Hex     | Decimal Integer | Fractional         |
|----------|---------|-----------------|--------------------|
| Orange   | #FFA500 | (255, 165, 0)   | (1.0, 0.65, 0.0)   |
| Sky Blue | #87CEEB | (135, 206, 235) | (0.52, 0.80, 0.92) |
| Thistle  | #D8BFD8 | (216, 191, 216) | (0.84, 0.75, 0.84) |

Colors are stored as binary too. You'll commonly see them in Hex, decimal, and fractional formats.

# Summary



- ALL modern computers represent signed integers using a two's-complement representation
- Two's-complement representations eliminate the need for separate addition and subtraction units
- Addition is identical using either unsigned and two's-complement numbers
- Finite representations of numbers on computers leads to anomalies
- Floating point numbers have separate fractional and exponent components.