
08/27/2018 Comp 411 - Fall 2018

More BiNARY REpresentationS

● Numbers
○ Signed integers
○ Biased integers
○ Fixed-point fractions
○ Floating point

● “Finiteness”
● Pixels

○ On screen
○ In files

1

08/27/2018 Comp 411 - Fall 2018

Time to Register

2

1

2 Your UNC
ONYEN

Use this
for your

Institution

08/27/2018 Comp 411 - Fall 2018

A quick review

What is 0xACE?

In binary:

In octal:

In decimal:

3

08/27/2018 Comp 411 - Fall 2018

Signed Integers

● Obvious method is to encode the sign of the integer using one bit.
● Conventionally, the most significant bit is used for the sign.
● This encoding of signed integers is called “SIGNED MAGNITUDE”

4

● The Good
○ Easy to negate, easy to take absolute value

● The Bad
○ Two ways to represent “0”, +0 and -0
○ Add/subtract is complicated; depends on the signs

● Not frequently used in practice
○ With one important exception that we’ll discuss shortly

 S 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0

2018

1

-

08/27/2018 Comp 411 - Fall 2018

2’s Complement Notation

● The 2’s complement representation for signed integers is the
most commonly used signed-integer representation.

● It is a simple modification of unsigned integers where the most
significant bit is a negative power of 2.

5

Still a “sign bit”
(It must be “1” for

the number to < 0)

-32768
+2018

-30750
● Huh?

○ Negative numbers seem hard to “read” (for humans)
○ Nonsymmetric range:

 For 16 bits the range is -32768 ≤ x ≤ 32767

 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0

08/27/2018 Comp 411 - Fall 2018

Why 2’s Complement?

● In the two’s complement representation for signed integers, the
same binary “addition procedure” (mod 2n) works for adding any
combination of positive and negative numbers.

● Don’t need a separate “subtraction procedure”
(carries only, no borrows)

● The “addition procedure” also
handles unsigned numbers!

● In 2’s complement adding is adding
regardless of operand signs.

● You NEVER need to subtract
when you use 2’s-complement.

● Just form the 2’s -complement
of the subtrahend

6

Ignore this “carry”

 5510 = 0000001101112
+1010 = 0000000010102
 6510 = 0000010000012

 5510 = 0000001101112
+-1010 = 1111111101102

4510 = 10000001011012

08/27/2018 Comp 411 - Fall 2018

2’s Complement Tricks

● Negation – changing the sign of a number
1. Invert every bit (i.e. 1 → 0, 0 → 1)

2. Add 1

Example: 4210 = 0000001010102
 -4210 = 1111110101012 + 1 = 1111110101102

● Sign-Extension - aligning different sized 2’s complement integers
○ Simply copy the sign bit into higher positions

Example: 16-bit version of 42: 4210= 00000000001010102
 16-bit version of -42: -4210= 11111111110101102

7

08/27/2018 Comp 411 - Fall 2018

Class Exercise

10’s-complement Arithmetic (so you’ll never need to borrow again)

Step 1) Write down two 3-digit numbers, where
you’ll subtract the second from the first

Step 2) Form the 9’s-complement of each digit
in the second number (the subtrahend)

Step 3) Add 1 to it (the subtrahend)

Step 4) Add this number to the first

Step 5) If your result is less than 1000, form the 9’s
complement of the sum, add 1, and remember
your result is negative, otherwise subtract 1000

What did you get? Why weren’t you taught to subtract this way?
8

08/27/2018 Comp 411 - Fall 2018

Fixed-point numbers

● You can always assume that the boundary between 2
bits is a “binary point”.

● If you align binary points between addends, there is no
effect on how operations are preformed.

9

1
25

1
24

1
26

1
23

1
22

0
21

1
20

0
2-1

1
2-2

1
2-3

0
2-4

1
-27

11111101.0110 = -27 + 26 + 25 + 24 + 23 + 22 + 20 + 2-2 + 2-3
 = -128 + 64 + 32 + 16 + 8 + 4 + 1 + 0.25 + 0.125
 = -2.625

OR

11111101.0110 = -42 × 2-4
 = -42 / 16
 = -2.625

08/27/2018 Comp 411 - Fall 2018

Repeated Binary Fractions

Not all fractions can be represented exactly using a finite
representation. You’ve seen this before in decimal notation where the
fraction 1/3 (among others) requires an infinite number of digits to
represent (0.3333…).

In binary, a great many fractions that you’ve grown attached to
require an infinite number of bits to represent exactly.

Example: 1/10 = 0.110 = 0.00011...2 = 0.19...16

 1/5 = 0.210 = 0.0011...2 = 0.3...16

 1/3 = 0.310 = 0.01...2 = 0.5...16

10

08/27/2018 Comp 411 - Fall 2018

Finite Representations

● Computers use a finite set of bits (or certain fixed-sized bit
clusters) to represent numbers.

● In fact, everything that a realizable computer does is limited by a
finite set of bits.

● Through your mastery of mathematics, you’ve gradually grown
used to infinite representations. So much so that finite
representations seem odd

● One type of infinity that you’ve grown used to: Infinite digits

● The concept an infinite supply of zero digits is conceptually
elegant, but difficult to physically implement

11

...00000000042.0000000000...

...00000000000.0000000000...001000
10000000...00000000000.0

08/27/2018 Comp 411 - Fall 2018

Side Effects of being Finite

These examples assume a finite 16-bit representation

● You can “overflow”

● Certain numbers can’t be negated

12

3276710 + 110 = -3276810 0111 1111 1111 11112
 + 0000 0000 0000 00012
 1000 0000 0000 00002

-2000010- 2000010= 2553610 1011 0001 1110 00002
 + 1011 0001 1110 00002
 1 0110 0011 1100 00002

-3276810 = -3276810 1000 0000 0000 00002
 0111 1111 1111 11112

+ 0000 0000 0000 00012
 1000 0000 0000 00002

08/27/2018 Comp 411 - Fall 2018

Bias Notation

There is yet one more way to represent signed integers, which is
surprisingly simple. It involves subtracting a fixed constant from a
given unsigned number. This representation is called “Bias Notation”.

Example of Bias 127:

Adding 2 numbers requires a
subtraction to fix the result

Why? Monotonicity when viewed
 as an unsigned number

13

1
27

0
26

0
25

1
24

0
23

1
22

1
21

0
20

 9 x 24 = 144
+ 6 x 20 = 6

 - 127
 23

 150
+ 150

 - 127
173 = 46 + 127

08/27/2018 Comp 411 - Fall 2018

Floating Point Numbers

Another way to represent numbers is to use a notation similar to
Scientific Notation. This format can be used to represent numbers
with fractions (3.90 x 10-4), very small numbers (1.60 x 10-19), and large
numbers (6.02 x 1023). This notation uses two fields to represent each
number. The first part represents a normalized fraction (called the
significand), and the second part represents the exponent (i.e. the
position of the “floating” binary point).

14

08/27/2018 Comp 411 - Fall 2018

IEEE 754 Format

● Single precision format

● Example: 52.25 = 00110100.010000002
Normalize: 001.10100010000002 x 2

5

 0 10000100 10100010000000000000000
 0100 0010 0101 0001 0000 0000 0000 0000
 52.25 = 0x42510000

15

S Exponent Significand

1 8 23
The exponent is

represented in bias
127 notation. Why?

(127+5)

08/27/2018 Comp 411 - Fall 2018

IEEE 754 Limits and Features

● SIngle precision limitations
○ A little more than 7 decimal digits of precision
○ Minimum positive normalized value: ~1.18 x 10-38

○ Maximum positive normalized value: ~3.4 x 1038

● Inaccuracies become evident after multiple single
precision operations

● Double precision format

16

08/27/2018 Comp 411 - Fall 2018

Bits You can See

The smallest element of a visual display is called a “pixel”. Pixels have
three independent color components that generate most of the
perceivable color range.

● Why three and what are they
● How are they represented in

A computer?
● First, let’s discuss this notion

of perceivable

17

08/27/2018 Comp 411 - Fall 2018

It starts with the Eye

● The photosensitive part of the eye is called
the retina.

● The retina is largely composed of two
cell types, called rods and cones.

● Cones are responsible for color perception.
● Cones are most dense within the fovea.
● There are three types of cones,

referred to as S, M, and L whose
spectral sensitivity varies with wavelength.

18

08/27/2018 Comp 411 - Fall 2018

Why we see in color

● Pure spectral colors simulate all
cones to some extent.

● Mixing multiple colors can stimulate
the cones to respond in a way that
Is indistinguishable from a pure color.

● Perceptually identical sensations are
called metamers.

● This allows us to use just three colors

to generate all others.

19

08/27/2018 Comp 411 - Fall 2018

How colors Are Represented

● Each pixel is stored as
three primary parts

● Red, green, and blue
● Usually around 8-bits

per channel
● Pixels can have individual

R,G,B components or
they can be stored indirectly
via a “look-up table”

20

 8-bits 8-bits 8-bits

3 - 8-bit unsigned binary integers (0,255)
-OR-

3 - fixed point 8-bit values (0-1.0)

08/27/2018 Comp 411 - Fall 2018

Color Specifications

Web colors:

Colors are stored as binary too. You’ll commonly see them
in Hex, decimal, and fractional formats.

21

Name Hex Decimal Integer Fractional

Orange #FFA500 (255, 165, 0) (1.0, 0.65, 0.0)

Sky Blue #87CEEB (135, 206, 235) (0.52, 0.80, 0.92)

Thistle #D8BFD8 (216, 191, 216) (0.84, 0.75, 0.84)

08/27/2018 Comp 411 - Fall 2018

Summary

● ALL modern computers represent signed integers
using a two’s-complement representation

● Two’s-complement representations eliminate the need
for separate addition and subtraction units

● Addition is identical using either unsigned and
two’s-complement numbers

● FInite representations of numbers on computers leads
to anomalies

● Floating point numbers have separate fractional and
exponent components.

22

