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More BiNARY REpresentationS

● Numbers 
○ Signed integers
○ Biased integers
○ Fixed-point fractions
○ Floating point

● “Finiteness”
● Pixels

○ On screen
○ In files
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A quick review

What is 0xACE?

In binary:

In octal:

In decimal:
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Signed Integers

● Obvious method is to encode the sign of the integer using one bit. 
● Conventionally, the most significant bit is used for the sign.
● This encoding of signed integers is called “SIGNED MAGNITUDE” 
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● The Good
○ Easy to negate, easy to take absolute value

● The Bad
○ Two ways to represent “0”, +0 and -0
○ Add/subtract is complicated; depends on the signs

● Not frequently used in practice
○ With one important exception that we’ll discuss shortly

 S  214 213 212 211 210 29   28 27  26  25   24   23  22  21   20

0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0

2018
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2’s Complement Notation

● The 2’s complement representation for signed integers is the 
most commonly used signed-integer representation. 

● It is a simple modification of unsigned integers where the most 
significant bit is a negative power of 2.
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Still a “sign bit”
(It must be “1” for 

the number to < 0)

-32768
+2018

-30750
● Huh?

○ Negative numbers seem hard to “read” (for humans)
○ Nonsymmetric range:

        For 16 bits the range is -32768 ≤ x ≤ 32767

 215 214 213 212 211 210 29   28 27  26  25   24   23  22  21   20

1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0
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Why 2’s Complement?

● In the two’s complement representation for signed integers, the 
same binary “addition procedure” (mod 2n) works for adding any 
combination of positive and negative numbers.

● Don’t need a separate “subtraction procedure” 
(carries only, no borrows)

● The “addition procedure” also 
handles unsigned numbers!

● In 2’s complement adding is adding 
regardless of operand signs. 

● You NEVER need to subtract 
when you use 2’s-complement.

● Just form the 2’s -complement
of the subtrahend 

6

Ignore this “carry”

 5510 =  0000001101112
+1010 =  0000000010102
 6510 =  0000010000012

 5510 =  0000001101112
+-1010 =  1111111101102

4510 = 10000001011012
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2’s Complement Tricks

● Negation – changing the sign of a number
1. Invert every bit (i.e. 1 → 0, 0 → 1)

2. Add 1

Example:  4210 = 0000001010102
        -4210 = 1111110101012 + 1 = 1111110101102

● Sign-Extension - aligning different sized 2’s complement integers
○ Simply copy the sign bit into higher positions

Example: 16-bit version of 42:    4210= 00000000001010102
        16-bit version of -42:  -4210= 11111111110101102
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Class Exercise

10’s-complement Arithmetic (so you’ll never need to borrow again)

Step 1) Write down two 3-digit numbers, where
you’ll subtract the second from the first

Step 2) Form the 9’s-complement of each digit
in the second number (the subtrahend)

Step 3) Add 1 to it (the subtrahend)

Step 4) Add this number to the first

Step 5) If your result is less than 1000, form the 9’s 
complement of the sum, add 1, and remember
your result is negative, otherwise subtract 1000

What did you get? Why weren’t you taught to subtract this way?
8
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Fixed-point numbers

● You can always assume that the boundary between 2 
bits is a “binary point”. 

● If you align binary points between addends, there is no 
effect on how operations are preformed.
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11111101.0110 = -27 + 26 + 25 + 24 + 23 + 22 + 20 + 2-2 + 2-3
              = -128 + 64 + 32 + 16 + 8 + 4 + 1 + 0.25 + 0.125
              = -2.625

OR

11111101.0110 = -42 × 2-4
              = -42 / 16
              = -2.625
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Repeated Binary Fractions

Not all fractions can be represented exactly using a finite 
representation. You’ve seen this before in decimal notation where the 
fraction 1/3 (among others) requires an infinite number of digits to 
represent (0.3333…).

In binary, a great many fractions that you’ve grown attached to 
require an infinite number of bits to represent exactly.

Example: 1/10 = 0.110 = 0.00011...2 = 0.19...16

 1/5 = 0.210 = 0.0011...2 = 0.3...16

 1/3 = 0.310 = 0.01...2 = 0.5...16
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Finite Representations

● Computers use a finite set of bits (or certain fixed-sized bit 
clusters) to represent numbers.

● In fact, everything that a realizable computer does is limited by a 
finite set of bits. 

● Through your mastery of mathematics, you’ve gradually grown 
used to infinite representations. So much so that finite 
representations seem odd

● One type of infinity that you’ve grown used to: Infinite digits

● The concept an infinite supply of zero digits is conceptually 
elegant, but difficult to physically implement

11

...00000000042.0000000000...

...00000000000.0000000000...001000
10000000...00000000000.0
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Side Effects of being Finite

These examples assume a finite 16-bit representation

● You can “overflow”

● Certain numbers can’t be negated
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3276710 + 110 = -3276810 0111 1111 1111 11112
                       + 0000 0000 0000 00012
              1000 0000 0000 00002

-2000010- 2000010= 2553610 1011 0001 1110 00002
                       + 1011 0001 1110 00002
                1 0110 0011 1100 00002

-3276810 = -3276810 1000 0000 0000 00002
                       0111 1111 1111 11112

+ 0000 0000 0000 00012
              1000 0000 0000 00002
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Bias Notation

There is yet one more way to represent signed integers, which is 
surprisingly simple. It involves subtracting a fixed constant from a 
given unsigned number. This representation is called “Bias Notation”.

Example of Bias 127:

Adding 2 numbers requires a 
subtraction to fix the result

Why? Monotonicity when viewed
       as an unsigned number  
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  9 x 24 = 144
+   6 x 20 =         6

  - 127
  23

              150
+ 150

  - 127
173 = 46 + 127
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Floating Point Numbers

Another way to represent numbers is to use a notation similar to 
Scientific Notation. This format can be used to represent numbers 
with fractions (3.90 x 10-4), very small numbers (1.60 x 10-19), and large 
numbers (6.02 x 1023). This notation uses two fields to represent each 
number. The first part represents a normalized fraction (called the 
significand), and the second part represents the exponent (i.e. the 
position of the “floating” binary point). 
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IEEE 754 Format

● Single precision format

● Example:   52.25 = 00110100.010000002
Normalize: 001.10100010000002 x 2

5

              0 10000100 10100010000000000000000
              0100 0010 0101 0001 0000 0000 0000 0000
               52.25 = 0x42510000

15

S Exponent Significand

1 8 23
The exponent is 

represented in bias 
127 notation. Why?

(127+5)
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IEEE 754 Limits and Features

● SIngle precision limitations
○ A little more than 7 decimal digits of precision
○ Minimum positive normalized value: ~1.18 x 10-38

○ Maximum positive normalized value: ~3.4 x 1038

● Inaccuracies become evident after multiple single 
precision operations

● Double precision format

16
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Bits You can See

The smallest element of a visual display is called a “pixel”. Pixels have 
three independent color components that generate most of the 
perceivable color range.

● Why three and what are they
● How are they represented in

A computer?
● First, let’s discuss this notion

of perceivable

  

17
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It starts with the Eye

● The photosensitive part of the eye is called 
the retina. 

● The retina is largely composed of two 
cell types, called rods and cones. 

● Cones are responsible for color perception.
● Cones are most dense within the fovea.
● There are three types of cones, 

referred to as S, M, and L whose
spectral sensitivity varies with wavelength.

18
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Why we see in color

● Pure spectral colors simulate all
cones to some extent.

● Mixing multiple colors can stimulate
the cones to respond in a way that
Is indistinguishable from a pure color.

● Perceptually identical sensations are 
called metamers.

● This allows us to use just three colors

to generate all others. 

19
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How colors Are Represented

● Each pixel is stored as
three primary parts

● Red, green, and blue
● Usually around 8-bits

per channel
● Pixels can have individual

R,G,B components or
they can be stored indirectly
via a “look-up table”

20

 8-bits         8-bits        8-bits

3 - 8-bit unsigned binary integers (0,255)
-OR-

3 - fixed point 8-bit values (0-1.0) 
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Color Specifications

Web colors:

Colors are stored as binary too. You’ll commonly see them 
in Hex, decimal, and fractional formats.

21

Name Hex Decimal Integer Fractional

Orange #FFA500 (255, 165, 0) (1.0, 0.65, 0.0)

Sky Blue #87CEEB (135, 206, 235) (0.52, 0.80, 0.92)

Thistle #D8BFD8 (216, 191, 216) (0.84, 0.75, 0.84)
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Summary

● ALL modern computers represent signed integers 
using a two’s-complement representation

● Two’s-complement representations eliminate the need 
for separate addition and subtraction units 

● Addition is identical using either unsigned and 
two’s-complement numbers

● FInite representations of numbers on computers leads 
to anomalies

● Floating point numbers have separate fractional and 
exponent components.
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