ViRTvAL MEMORY

Finally! A lecture on
some+hin3 | care
about- PAGE FAULTS!

| wish we were stil
doina NAND gates..

int VtoF{int VPagedo, int EO} |
if (R[VPagaHa] == 0}
PageFault (VPagetos) ;

Protlem: Translate
urn (FPH[VFageMo] << p} | FO:

VIETUAL ADDEESS

to PHYSICAL ADDEESS

/* Handle a missing page... *

veid PageFaulk(int VPagedlo} {
int i:

!

i=
if (D[i] == 1

WritePage (DiskAdr[i]) ,PEM[i]):
R[i] = 0;

FRH[VFageila] = FPN[il:
ReadPage (Diskhdr [VPageWo] ,FEI[L])
R[VPageNo] = 1:
D[VFagela] = 0;

) Last Problem Set is due Wed
2) Flhal Exam on Sa-l-ur'day at Bam
3) Second Midterm is gr'acleal.

e Wel go over it on our next and last class meeﬂna.
e For the remainder, we'll do a Final-exam c;+udy session.

W/27/2017 Comp 41 - Fall 2017

YOV CAN NEVER BE TOO RICH, TOO 666D
LOOKING, OR HAVE TOO MUCH MEMORY!

=

Last time we discussed how to FAKE a FAST memory, this time well

turn our attention to FAKING a LARGE memor-y.

W/27/2017 Comp 41 - Fall 2017

EXTENDING THE MEMORY HIERARCHY

}(% 10%x-10°x
FAST DYNAMIC
CPU \‘_’ STATIC \‘_’ RAM [+ DISK
“Cache” Main “Virtual
Memory Memory”

e So far, we've used SMALL fast memory + BiG slow memory
to fake a BIG FAST memory (caching).

e Can we combine RAM and Disk to Page DisK sized at near
RAM speeds?

VIRTUAL. MEMORY

- Use RAM as cache to a much larger storage pool, on slower devices

- TRANSPARENCY - VM locations look' the same to progrom whether
onh DISK or in RAM,

. ISOLATION of actudl RAM size From software.

- Support for MULTIPLE, SIMULTANEOUS ADDRESS SPACES

W/227/2017 Comp 41 - Fall 2017

VIRTVAL MEMORY

2% "Giga"
2;': ‘Tera:
ILLUSION: Huge memor 2 &3 Mermory Maragement unit
(272 (4G) byfes? 2% (iI8E) by+e9?) 4 —
ACTIVE USAGE: small ‘Pr action “irtual 'Ph 9i¢a!
28 - ress
(2 by+e9?) aalil/r;ss o
Actual HARDWARE: CPU MMU ——>» RAM

.22 (24) l21+e9 of RAM

. 2% (5004) bytes of Disk.
maylae more, maylae less! V
ELEMENTS OF DECEIT: 7
. Par+tition memory into

mal ble chunks--

‘Pages’ (4k-8K-10K-04K)

- MAP a Few to RAM, @
assign others to DISK -
- Keep ‘HoT* pages in RAM. VIRTUAL" ‘Page Map" "‘PHYSICAL"

memory memor'y

pages

0%69
W/27/2017 Comp 4 - Faﬁz 7

SIMPLE PAGE MAP DESIGN

Page Index
Virtual P #
‘Page Map"* e
A special memory
that holds
\le-uaI—+o—Phy~;icaI
MAPPIR__ .—_ —
v
Physical Page #

Why use HIGH address bits to index

pages?
I -

" .. LoCcALITY.
Keeps related data on same page.

Why use LOW address bits to index cache lines?

FUNCTION: Given Virtual Address,

+ Map to PHYSICAL oddress
OR

- Cause PAGE FAULT allowing page
replacemen+

- LOCALITY.

Keeps related data Hrom competing
For same cache lines.

/27/2017

‘Physical i
" ~ -
T
- K=
[77
PAGEMAP

Comp 41 - Fall 2017

VIRTVAL MEMORY Vs. CACHE

TAG

DATA

[|
index

A

Mem[A]

Main

"| Memory

Mem|[B]

_,@4—

[VPAGE NO.|OFFSET |

l

index

/27/2017

Page 0

Page |

Paﬁe 2.

N

Page N

4

PAGEMAP

PHYSICAL MEMORY

Comp 41 - Fall 2017

CACHE:

Relatively short blocks (I-64 bytes)
Few lines: scarce resource

miss time: 3x-20x hit time

VIRTUAL. MEMORY-
e Disk: long latency, Fast xFer
- miss time: ~10° x hit time
- write-back. essentidl
- large pages in RAM
e Lots oF lines: one For each poge
® Vpage mapping is determined
ah index
(ie. ‘direct-mapped' w/o +a3)
data in physical memory

VIRTVAL MEMORY: A H/W VIEW

Virtual Memor'y Physical Memor'y

PPN
| P

——~—»|
>

o
o

-

N %

olo[a|loo o oO

>

Pagemap Characteristics:
- Ohe en+r'y per virtual Paae!
- Conttains PHYSICAL page number (PPN) of each resident page

- RESIDENT bit = 1| for pages stored in RAM, or O For
hon-resident (disk. or unallocated). Page Fault when R = O.

- DRTY bit says we've changed this page since loading it From disk
(and therefore need to write it back to disk when it's replaced)

W/227/2017 Comp 41 - Fall 2017

VIRTVAL MEMORY: A S/W VIEW

int VtoP(unsigned int address) {

Problem: Translate unsigned int VPageNo = address>>p;
VIRTUAL ADDRESS unsigr[1ed int I]>age0ffset = address & ((1<<p)-1);
if (R[VPageNo] == 0)
to PHYSICAL ADDRESS PageFault(VPageNo):
return (PPN[VPageNo]<<p) |PageOffset;
VPageNo PageOffset }
Virtual Page # /* Handle a missing page... */
void PageFault(int VPageNo) {
int i;
i = SelectLRUPage();
WritePage(DiskAdr(i),PPN[i]);
R[i] = 0;
l PPN[VPageNo] = PPN[i];

. L ReadPage(DiskAdr(VPageNo),PPN[i]);
Physical Page # R[VPageNo] =1;
D[VPageNo] = 0;

W/227/2017 Comp 41 - Fall 2017

THE H/W - S/W BALANCE

IDEA:
e devote HARDWARE to hiah—+raP«Pic, Per'l:or'rmnce—cr"rl-ical path

o use (slow, ch_eap) SOFTWARE. to handle exceptional cases

int VtoP(unsigned int address) {
unsigned int VPageNo = address>>p;

unsigned int PageOffset = address&((1<<p)-1);
hardware] if (R[VPageNo] == @)PageFault(VPageNo);
return (PPN[VPageNo]<<p)|PageOffset;

— /* Handle a missing page... */

void PageFault(int VPageNo) {
int i = SelectLRUPage();
if D[i] == 1) WritePage(DiskAdr(i),PPN[i]);
R[i] = 0;

_‘ PA[VPageNo] = PPN[i];
GO‘p'l'WGre ReadPage (DiskAdr (VPageNo),PPN[i]);
R[VPageNo] = 1;

D[VPageNo] = 0;

—

HARDWARE performs address translation, detects poge Faults:
® running program is interrupted (*suspended”;
o PageFauH'(.) is cadlled

e On return from PageFault; running program can continue
W/27/2017 C mp 41 - Fall 2017

PAGE MaP AROTHME‘HCP

(v + p) Dbits in virtual address
(m + p) bits in physical address
2" number of VIRTUAL pages
2™ number of PHYSICAL pages

/ |
D RPPN ')
VPageNo (PO 1 T _
IR }
A e _
0
m v 1 /><:: :
PAGEMAP
PPageNo | PO PHYSICAL MEMORY

Typical page size: 4K — 128K bytes
Typical (v+p): 32 or 64 bits
Typical (m+p): 28 — 34 bits

(256 MB — 16 GB)

2P bytes per physical page
2V*P pytes in virtual memory
2M™*Ppytes in physical memory
(m+2)2Y bits in the page map

/27/2017

Comp 41 - Fall 2017

EXAMPLE: PAGE MAP ARITHMETIC

SUPPQOSE...

Virtual Page #

32-bit Virtua address

/27/2017

—_—
=

24 page size (I KB)
228 RAM (256 MB)

THEN-:
phygicd Pages = 2281214 = 16384

Virtudl Pages = __ 2124 =2"°
Page Map Entries = 262,144

Physical Page #

Use SRAM fFor page map??? OUCH!

Comp 41 - Fall 2017

RAM-RESIDENT PAGE MaPs

SMALL page maps can use dedicated RAM..
but, gets this approach gets expensive for big ones!

SOLUTION: Move page mop into MAIN MEMORY-

a A

Virtual Address Physical Memory

PROBLEM:
Each memory reference
— how takes 2 accesses
to Physical memor'y!
virtual physical) Load VPN — PPN
page page 2) Load Mem[PPN | PO]
humber humber \ /

. .

The memory overhead for _— \Phchm memo

the pagemap is smaller than pages that hold
you might think. From the e map entries
previous example: P29 P

4*218/228 = 04 %
W/27/2017 Comp 41 - Fall 2017

TrANSLATION LOook-ASIDE BuFrer (TLB)

PROBLEM: 2x PerPormance hit-.

each memory reference now takes 2 accesses!
SOLUTION: a special CACHE of recently used page map entries

Virtual Address

Y/

First, lock
in TLB
On miss, do
+ranslation
and store

resul

On hit, skip
‘ranslation

virtual
page

humber

Physical Memory

;

Physical

page
humber

(e

LOCALITY in memory
reference patterns —
SUPER locality in
References to page map

VARIATIONS:

® sparse page map 9+orage

® paging the page map

~

W

TLB: small, usually Fully—associaﬁve cache fFor mapping VPN—PPN

/27/2017

Comp 41 - Fall 2017

OPTIMIZING SPARSE PAGE MAPS

For large Virtual Address

spaces only a small Virtual Address Physical Memory
percentage of page table
entries cgon-}am “aappings". For Example:
This is because some VA 264-' 8kb pages, PA 2%
address ranges are never
used by the application. How irtual How large of a page tdble?
can we save space in the virtua 1 LG4 51 _ 53
pagemap?/ page 2 =4 X2 =2 bY"eG
number physical
page
TLB number At most, how
many could have a
resident mapping?
236"3 = 27—3

. 22%2/25' = 37 % 107
Oon TLB miss:

® look up VPN in ‘sparse’ data structure (e.g, a list of VPN-PPN pairs)
e only have eniries for ALLOCATED pages

® use hashing to speed up the search Another 3ooal reason
e Jdlocate new entries ‘on demand' to handle page

e time penaity? LOW i TLB hit rate is high.. misses in SW

/27/2017 Comp 4l - Fall 2017 14

MULTILEVEL PAGE MAPS

Given a HUGE virtual memory, the cost of storing all of the page map
entries in RAM may STILL be too expensive..

SOLUTION: A hierarchical page map.. toke advan+aae

oF the observation

that while the virtual memory address space is large, it is generally
sparsely populated with clusters of pages.

Consider a machine with a 32-bit virtual
address space and G4 MB (26-bit) of
Physical memory that uses 4 KB pages.

Assuming 4 Iay-l-e Page—‘l-able enttries, a
single—level page map requires 4+MB

(>0% of the availdble memory). OF these,
more than 98% wil reference
non-resident pages (Why?).

A 2-evel look-up increases the size of
the worse-case page table slightly.
However, if a First level entry has its
hon-resident bit set it saves large
amounts of memory.

32-bit virtual address

Doesn't that

mean we how

have fo do 3
9 accesses to get
what we wani?

10 | 10 | 12
wﬁ‘ﬁ
.
iy L

register =g
—>

Level ‘;
Notice that if the 2™ leveﬁ
1ables are “page-sized”
they foo can be ‘paged
out” (stored on disk)

W/227/2017 Comp 41 - Fall 2017

Level 2

Data =

CONTEXTS

A CONTEXT is a complete set of mappin from VIRTUAL +o
PHYSICAL addresses, as dictated by the Full contents of the page

map: Virtual Memory Physical Memory
... We might like to DR N
v suPPoH' rru|+i|9|e - N
U VIRTUAL to PHYSICAL T ><:
Mappings and, thus, B S RS
multiple Contexts. —/"PAGE '\;(AP

This endbles several programs to be simultaneously loaded into
main memory, each with it's own ‘address space“-.
Virtual Physical Virtual

‘Context Switch: Memory 1 Memory Memory 2
Reload the page mapl \\\ ,>><::

[

Q‘ ~N
You end up with pages N
from different applications S AS \\\ S
simultaneously in memory. >

map map

W/227/2017 Comp 41 - Fall 2017 &

Uste CACHES WITH VIRTUAL MEMORY |||

Virtual Cache

Tags match virtual addresses

Physical Cache
Tags match physical addresses

CPU CACiHE . MMU

| Dynamic

RAM

TN%eTA@sm%F*wmmLﬂeyhdd
oddresses after translation.

Dynamic

A
\

The Cache TAGs are virtuadl,
the rqweawﬁadkeams
betore translation

Disk

T CACHE
"MMU RAM

|
Y

CPU |~—

e Problem: cache becomes

invalid af-ter context switch
e FAST: No MMU time on HIT

/27/2017

Disk

e Avoids stale cache data
after context switch
e SLOW: MMU time on HIT

Physically addressed Caches are
the trend because they better
9uppor‘+ Par'allel Proceseing

Comp 4l - Fall 2017 7

BEST oF BoTH WorLbs

MMU +

-
—

CPU |~—[VPN

'

7 Disk \

PPN

| Dynamic

!

RAM

‘_N

CACHE

OBSERVATION: IF cache line selection is based on unmapped page
ofFfset bits, RAM access in a physical cache can overlap page map
access. Tag From cache is comPar'ed with physical page number

From MMU.

Want ‘small' cache index / small page size — go with more associativity

W/27/2017 Comp 4 -

Fall 2017

SUMMARY

Virtual Memory-.
Makes a small PHYSICAL memory appear to be a larae VIRTUAL one

Break memory into manageable chunks caled PAGES
Pagemap:
A table for mapping Virtual-to-Physical pages
Each entry has Resident, Dirty, and Physical Page Number
Can get large iF virtual address space is large
Store in main memory
TLB - Translation Lookaside Buf-fer:
A pogemap ‘cache’
Contexts:

Sets ofF virtual-to-physical mapping that allow pages From multiple
applications to be in physical memory simultaneously (even if they have
the same virtual addresses)

W/227/2017 Comp 41 - Fall 2017

