
11/27/2017 Comp 411 - Fall 2017

Virtual Memory

1

1) Last Problem Set is due Wed
2) FInal Exam on Saturday at 8am
3) Second Midterm is graded.
● We’ll go over it on our next and last class meeting.
● For the remainder, we’ll do a final-exam study session.

Finally! A lecture on
something I care

about– PAGE FAULTS!

I wish we were still
doing NAND gates…

11/27/2017 Comp 411 - Fall 2017

You can never be too rich, too good

looking, or have too much memory!

Last time we discussed how to FAKE a FAST memory, this time we’ll
turn our attention to FAKING a LARGE memory.

2

Good
Looking

Memory

Rich

?

11/27/2017 Comp 411 - Fall 2017

Extending the Memory Hierarchy

3

CPU FAST
STATIC

DYNAMIC
RAM DISK

● So far, we’ve used SMALL fast memory + BIG slow memory
to fake a BIG FAST memory (caching).

● Can we combine RAM and DISK to fake DISK sized at near
RAM speeds?

VIRTUAL MEMORY
• Use RAM as cache to a much larger storage pool, on slower devices
• TRANSPARENCY - VM locations "look" the same to program whether

on DISK or in RAM.
• ISOLATION of actual RAM size from software.
• Support for MULTIPLE, SIMULTANEOUS ADDRESS SPACES

3x-20x 104x-105x

Main
Memory

“Cache” “Virtual
Memory”

11/27/2017 Comp 411 - Fall 2017

Virtual Memory

4

ILLUSION: Huge memory
 (232 (4G) bytes? 264 (18E) bytes?)
ACTIVE USAGE: small fraction
 (228 bytes?)
Actual HARDWARE:
 • 231 (2G) bytes of RAM
 • 239 (500G) bytes of DISK...

... maybe more, maybe less!
ELEMENTS OF DECEIT:
 • Partition memory into
 manageable chunks--
 “Pages” (4K-8K-16K-64K)
 • MAP a few to RAM,
 assign others to DISK
 • Keep “HOT” pages in RAM.

“virtual
address”
VA

“physical
address”
PA

Memory Management Unit

“VIRTUAL”
memory
pages

“PHYSICAL”
memory
pages

230 “Giga”
240 “Tera”
250 “Peta”
260 “Exa”

“Page Map”

CPU RAMMMU

11/27/2017 Comp 411 - Fall 2017

Simple Page Map Design

5

FUNCTION: Given Virtual Address,
• Map to PHYSICAL address

OR
• Cause PAGE FAULT allowing page

replacement

Virtual Page #

Physical Page #

Why use HIGH address bits to index pages?
... LOCALITY.
Keeps related data on same page.

Why use LOW address bits to index cache lines?
 ... LOCALITY.
Keeps related data from competing
for same cache lines.

PAGEMAP

???
???

???

Virtual
Memory

Physical
Memory

“Physical
Page Number”

PPN

Page Index

“Page Map”
A special memory

that holds
Virtual-to-Physical

Mappings

11/27/2017 Comp 411 - Fall 2017

Virtual Memory vs. Cache

6

A Mem[A]

B Mem[B]

TAG DATA

=?

PAGEMAP PHYSICAL MEMORY

VPAGE NO. OFFSET

CACHE:
 Relatively short blocks (16-64 bytes)
 Few lines: scarce resource
 miss time: 3x-20x hit time

VIRTUAL MEMORY:
● Disk: long latency, fast xfer

- miss time: ~105 x hit time
- write-back essential!
- large pages in RAM

● Lots of lines: one for each page
● Vpage mapping is determined

 by an index
 (i.e. “direct-mapped” w/o tag)
 data in physical memory

index

index

Main
Memory

Page 0
Page 1
Page 2

Page N

11/27/2017 Comp 411 - Fall 2017

Virtual Memory: A H/W view

7

PAGEMAP

X
X

X

D R
Virtual Memory Physical Memory

Pagemap Characteristics:

• One entry per virtual page!
• Contains PHYSICAL page number (PPN) of each resident page
• RESIDENT bit = 1 for pages stored in RAM, or 0 for

non-resident (disk or unallocated). Page fault when R = 0.
• DIRTY bit says we’ve changed this page since loading it from disk

(and therefore need to write it back to disk when it’s replaced)

PPN
0
0
0
0
1
0
0

1
1
0
0
1
1
0

11/27/2017 Comp 411 - Fall 2017

Virtual Memory: A S/W view

8

int VtoP(unsigned int address) {
 unsigned int VPageNo = address>>p;
 unsigned int PageOffset = address & ((1<<p)–1);
 if (R[VPageNo] == 0)
 PageFault(VPageNo);
 return (PPN[VPageNo]<<p)|PageOffset;
}

/* Handle a missing page... */
void PageFault(int VPageNo) {
 int i;
 i = SelectLRUPage();
 if (D[i] == 1)

 WritePage(DiskAdr(i),PPN[i]);
 R[i] = 0;

 PPN[VPageNo] = PPN[i];
 ReadPage(DiskAdr(VPageNo),PPN[i]);

 R[VPageNo] = 1;
 D[VPageNo] = 0;
}

Virtual Page #

Physical Page #

Problem: Translate
 VIRTUAL ADDRESS
 to PHYSICAL ADDRESS

 VPageNo PageOffset

11/27/2017 Comp 411 - Fall 2017

The H/W - S/W Balance

9

IDEA:
● devote HARDWARE to high-traffic, performance-critical path
● use (slow, cheap) SOFTWARE to handle exceptional cases

HARDWARE performs address translation, detects page faults:
● running program is interrupted (“suspended”);
● PageFault(…) is called;
● On return from PageFault; running program can continue

int VtoP(unsigned int address) {
 unsigned int VPageNo = address>>p;
 unsigned int PageOffset = address&((1<<p)–1);
 if (R[VPageNo] == 0)PageFault(VPageNo);
 return (PPN[VPageNo]<<p)|PageOffset;
}

/* Handle a missing page... */
void PageFault(int VPageNo) {
 int i = SelectLRUPage();
 if (D[i] == 1) WritePage(DiskAdr(i),PPN[i]);
 R[i] = 0;

 PA[VPageNo] = PPN[i];
 ReadPage(DiskAdr(VPageNo),PPN[i]);
 R[VPageNo] = 1;
 D[VPageNo] = 0;
}

hardware

software

11/27/2017 Comp 411 - Fall 2017

Page Map Arithmetic

10

PAGEMAP PHYSICAL MEMORY

D RPPN
VPageNo PO

1
1

1
0

1

p

v

PPageNo PO
m

(v + p) bits in virtual address
(m + p) bits in physical address
2v number of VIRTUAL pages
2m number of PHYSICAL pages
2p bytes per physical page
2v+p bytes in virtual memory
2m+pbytes in physical memory
(m+2)2v bits in the page map

Typical page size: 4K – 128K bytes
Typical (v+p): 32 or 64 bits
Typical (m+p): 28 – 34 bits
 (256 MB – 16 GB)

11/27/2017 Comp 411 - Fall 2017

Example: Page Map Arithmetic

11

Virtual Page #

Physical Page #

SUPPOSE...
32-bit Virtual address
214 page size (16 KB)
228 RAM (256 MB)

THEN:
Physical Pages = ___________
Virtual Pages = _____________
Page Map Entries = _________

Use SRAM for page map??? OUCH!

228/214 = 16384

232/214 = 218

262,144

11/27/2017 Comp 411 - Fall 2017

RAM-Resident Page Maps

12

SMALL page maps can use dedicated RAM…
but, gets this approach gets expensive for big ones!

SOLUTION: Move page map into MAIN MEMORY:

Virtual Address Physical Memory

virtual
page
number

physical
page
number

Physical memory
pages that hold
page map entries

PROBLEM:
Each memory reference
now takes 2 accesses
to physical memory!
1) Load VPN → PPN

2) Load Mem[PPN | PO]

The memory overhead for
the pagemap is smaller than
you might think. From the
previous example:
 4*218/228 = 0.4 %

11/27/2017 Comp 411 - Fall 2017

Translation Look-aside Buffer (TLB)

13

PROBLEM: 2x performance hit…
 each memory reference now takes 2 accesses!

SOLUTION: a special CACHE of recently used page map entries

Virtual Address Physical Memory IDEA:
 LOCALITY in memory
 reference patterns →
 SUPER locality in
 References to page map

VARIATIONS:
● sparse page map storage
● paging the page map

TLB: small, usually fully-associative cache for mapping VPN→PPN

virtual
page
number

First, look
in TLB

physical
page
number

On miss, do
translation
and store

result
On hit, skip
translation

11/27/2017 Comp 411 - Fall 2017

Optimizing Sparse Page Maps

14

Virtual Address Physical Memory

virtual
page
number physical

page
numberTLB

On TLB miss:
● look up VPN in “sparse” data structure (e.g., a list of VPN-PPN pairs)
● only have entries for ALLOCATED pages
● use hashing to speed up the search
● allocate new entries “on demand”
● time penalty? LOW if TLB hit rate is high…

Another good reason
to handle page
misses in SW

For large Virtual Address
spaces only a small
percentage of page table
entries contain “Mappings”.
This is because some
address ranges are never
used by the application. How
can we save space in the
pagemap?

For Example:
 VA 264, 8Kb pages, PA 236

How large of a page table?
264-13 = 4 x 251 = 253 bytes

At most, how
many could have a
resident mapping?

236-13 = 223

223/251 = 3.7 x 10-9

11/27/2017 Comp 411 - Fall 2017

Multilevel Page Maps

15

Given a HUGE virtual memory, the cost of storing all of the page map
entries in RAM may STILL be too expensive…
SOLUTION: A hierarchical page map… take advantage of the observation
that while the virtual memory address space is large, it is generally
sparsely populated with clusters of pages.

Consider a machine with a 32-bit virtual
address space and 64 MB (26-bit) of
physical memory that uses 4 KB pages.

Assuming 4 byte page-table entries, a
single-level page map requires 4MB
(>6% of the available memory). Of these,
more than 98% will reference
non-resident pages (Why?).

A 2-level look-up increases the size of
the worse-case page table slightly.
However, if a first level entry has its
non-resident bit set it saves large
amounts of memory.

10 10 12
32-bit virtual address

Notice that if the 2nd level
tables are “page-sized”
they too can be “paged
out” (stored on disk)

PTBL

Level 1 Level 2

Data

Doesn’t that
mean we now
have to do 3
accesses to get
what we want?

Usually, an
on-chip
register

11/27/2017 Comp 411 - Fall 2017

Contexts

16

A CONTEXT is a complete set of mappings from VIRTUAL to
PHYSICAL addresses, as dictated by the full contents of the page
map:

PAGEMAP

X
X

X

D R
Virtual Memory Physical Memory

This enables several programs to be simultaneously loaded into
main memory, each with it’s own “address space”:

Virtual
Memory 1

Virtual
Memory 2

Physical
Memory“Context Switch”:

 Reload the page map!

map map

We might like to
support multiple
VIRTUAL to PHYSICAL
Mappings and, thus,
multiple Contexts.

You end up with pages
from different applications
simultaneously in memory.

11/27/2017 Comp 411 - Fall 2017

Using Caches with Virtual Memory

17

CACHE MMUCPU CACHE
MMUCPU

Physical Cache
Tags match physical addresses

● Avoids stale cache data
after context switch

● SLOW: MMU time on HIT

Virtual Cache
Tags match virtual addresses

● Problem: cache becomes
invalid after context switch

● FAST: No MMU time on HIT

The Cache TAGs are virtual,
they represent addresses
before translation.

These TAGs are physical, they hold
addresses after translation.

Physically addressed Caches are
the trend, because they better
support parallel processing

Dynamic
RAM

Disk

Dynamic
RAM

Disk

11/27/2017 Comp 411 - Fall 2017

Best of Both Worlds

18

CACHE

CPU Dynamic
RAM

MMU Disk

OBSERVATION: If cache line selection is based on unmapped page
offset bits, RAM access in a physical cache can overlap page map
access. Tag from cache is compared with physical page number
from MMU.

Want “small” cache index / small page size → go with more associativity

VPN PPN

11/27/2017 Comp 411 - Fall 2017

Summary

Virtual Memory:
Makes a small PHYSICAL memory appear to be a large VIRTUAL one

 Break memory into manageable chunks called PAGES
Pagemap:

A table for mapping Virtual-to-Physical pages
Each entry has Resident, Dirty, and Physical Page Number
Can get large if virtual address space is large
Store in main memory

TLB – Translation Lookaside Buffer:
A pagemap “cache”

Contexts:
Sets of virtual-to-physical mapping that allow pages from multiple

 applications to be in physical memory simultaneously (even if they have
 the same virtual addresses)

19

