=N
WIHERE DOES THIS LEAVE VS ITI“

—

Overal we can now near'ly +r'iple the clock rate.
lhstructions have a ’rhrouahpu’r ok one—Per—clock

. . 3x speed up:
with the f—o\\ownnﬂ caveats: 100 s ok
_\’ ‘/now 300 MHz
. Taken branches take 2 cyc\es. 2 ¢

2. Loads and store take | cycle.

You can Pipe\ine on ARM CPU even more. There exist ARM
implementations with 7, 8, and 9 pipeline stoges. But the
overhead of Iaypac:»c; PaJrhc; and stall cases increase.

/27/207 Comp 4l - Fall 2017 |

=
REALITY VS SPECMANSHIP ﬂ;ﬂ

—

Assuming approximately 10% of instructions executed are
branches, ond of those 807% ok the time they are taken,
and 125% of instruction executed are loads or stores,
what sort of real speed up do we expect?

perﬁbe%r; (100) * I =100 Clocks* 10 * 107 sec/clock = 1000 * 107 secs

PerPaHe; (0Xo8) * 2 + 25 * 2 + 795 * | = 205 Clocks

205 * 3333 % 10° sec/clock

\

40160 * 107 secs

—C—b £
eTere. = 1000/ 401600 2.490 X

\

/27/2017 ComP 4 - Fal 2017 2

NEXT TIME

I+ appears memory access time is our real bottleneck.

What tricks can be applied to improving CPU
PerPormanae in this case?

o |n+erleavinﬁ
e Block-transfers
o) Cachina

BEING FiVE a Bov aup His BLOS BY GEORGE SFARMNAS o s
MY COMPUTER'S BEEN IT CREEPS ALONG, HMMM, MY
RUNNING SLOW LATELY, THEN FREEZES, THEN COMPUTER SOUNDS
MY DAD SAID IT NEEDS STUTTERS, THEN STOPS, [| LIKE MY GRANDFATHER...
THEN CREEPS ALONG MAYBE GRANDPA NEEDS
AGAIN, THEN FREEZES... MORE RAM

WWW.BEINSFIVE.COM

W/27/2017 Comp 41 - Fall 2017

=

MEMORY HIERARCHY + CACHING 1M

I+ makes me look faster,
don’t you +hink?

S$ill in your Halloween
costume?

Memor'y Flavors
Principle of Locality
Memory Hierarchies
Caches

Associaﬁvﬂy

AN
. Wri+e—+hrough
| Write-back
g Midterm #2 on Wednesday
e Open notes & internet
e Must be in SNOI4, or previously

ar'ranaecl and monitored location

/27/2017 Comp 4l - Fall 2017 4

r—\
-l’ ‘_||.
I

TRICKS FOR INCREASING THROVGHPYT

Muttiplexed

bit lines word nes [P rst thing that

Address should pop into your
Col Col Cdl Cal mind when asked to
I 2 3 2N / speed up a digital design..
o EL oL L L L L Y PIPELINING
3
N h DRAM
{30 N e i =t
§ —&I —&I —&I —&I —&I —&I 20nS reads and writes
/\éj T L LT L L L Row?' (45 per abyte)
- \rnemo cell Double Data Rate

(ohe bit) 5ynchronous DRAM
(DDR)

: 7 =000

/27/2017 Comp 4l - Fall 2017 5

Column Mul-ﬁp!exer'/s%er

—
~ 2

(s
(s
-

-

N —
~
—

w

ANOTHER TRICK

Address[31:4]

Address[3:2]

Addr Addr Addr Addr
MEM, | | MEM MEM, | | MEM,
Data Data Data Data
Y Y Y Y /
0 1 2 3
Where did

18 only the lower order
addresses

needonlywaﬂﬂ-.eT

of the mux

/27/2017

E’; Address(l:0] go?

Comp 41 - Fall 2017

.
 —_

should try when asked to

speed up a cﬁgﬁal desigm

|n+er'leavin3

Accessing 4 memories at
the same time has 4x the

+hrwghpu+. Also, every

4th word is in a
different memory.

A limitation of both
pipelining and interieaving
is their assumption that
addresses are sequentiol

Which is approximately
truel

MEMORY TRACE -
A temporal sequence
e o 0o o ° of memo re-Ferences
e .o ® © o o000 o. (acldresse -Pr'oma
stack e 0 0 0 o real Pr'ogr'am

T TWO KEY OBSERVATIONS:

coee o °*°*° °e e® % oo TEMPORAL LOCALITY -
data o0e o oo o i+ an item is referenced,
eee ® it will tend to be
o & referenced again soon
.. .. .
L o‘ SPATIAL LOCALITY -
e & W an item is referenced

o o % nearby items wil tend
ro ra m o o .. ()
prog to be referenced soon

/27/2017 Comp 4l - Fall 2017 -

ALL MEMORIES AREN'T CREATED EQVAL |||
Quantity vs Speed..

Memory systems can be either:
- Bl and SLOW..
or
. SMALL and FAST.

$/GB
1000 | SRAM (500$/GB, 0.2 I there an
oo (, 0-2ns) ARCHITECTURAL solution
1 2
10 + DRAM (5$/GB, 5 ns) +O +h|9 D"—EMMA ‘
1)
p SSD
(1$/GB, 300 nS) e
o HDD (0.05$/GB, 10 mS)
> Access Time
10° 10 103 1 100

II/Z7/ZOI78 Comp 41 - Fall 2017

EXPLOITING THE MEMORY HIERARCHY
Approach | (Cr'ay, others): Expose Hierarchy

. Keaisi-er's, Main Memory,

Disk each availdble as
9+orage aternatives;

+ Tell programmers: ‘Use them wisely‘

Approach 2: Hide Hierarchy

SRAM

cPU

MAIN

==

- Programming model: SINGLE kind of memory, single

ress Gpace.

- Machine AUTOMATICALLY assigns locations to Fast or

slow memor-y, depending on
usage PaH-er'ns.

/

—
e -

‘MAIN MEMORY"
W/27/2017 Comp 41 - Fall 2017

HARD
Disk

THE CACHE CONCEFPT:

PROGRAM-TRANSPARENT MEMORY HIERARCHY

cPU 1.0 [—1—1].(1.0-0) [pynamic
00 (37 —l RAM
404 42
‘c ACHE‘ ‘MNN N\EMC)R‘/‘l

Cache contains TEMPORARY COPES of
selected main-memory locations.. eg MemlIOO] = 37

)) Improve Hhe average access time Challet 'fle"
_ _ Maoke the
a HT RATIO: Fraction of refs found in CACHE. it ratio. «
(1-a) Miss RATIO: Kemaining references. as Hﬁh ’ag,
ossible.
t _=at & (l—(x)(Jrc ++) =1 + (l—a)er N P /

- . Why, iss, do I
2) Transparency (compa+|la|||+y, programming ease) .7 ncr :ﬁeaa'c:::s poenaHy
} for both main memory

and cache?

W/227/2017 Comp 41 - Fall 2017 10

How Hich 6F A HIT RATIO?

Suppose we can easily build an on-chip static memory with a 800 ps
access time, but the Fastest dynamic memories that we can buy for
main memory have an average access time of 10 ns. How high of a hit
rate do we need to sustain an average access time of | ns?

Solve for o +ave = +C + (l—(ﬂ’rm

o=1-G -+t =1-(-08)0 = 98%

Wow, caches redlly need o be good And they arel _’"’

W/227/2017 Comp 41 - Fall 2017

BAsiCc CACHE ALGORITUM

ON REFERENCE TO MemlX]: Look. fFor X among
CPU cache +aas... /"X" here is a

2 memory address.
HIT: X == TAG() , For some cache line i f

Tag Data READ: return DATA()
WRITE: change DATA()
A [Mem[A] Start Write o Mem(X)
B Mem[B] MISs: X hot fFound in ahy TAG of the cache
REPLACEMENT SELECTION:
Cache (1-0) Select some LINE k. to hold Meml[X] (Allocation)
‘Lines*
MAIN READ: Read Mem[X]
MEMORY set TAG(K)=X, DATA(K)-Mem[X]

Cache-lines mi3h+ contain multiple
sequential words £rom memory, WRITE: Start Write to Mem(X)

thus amortizing the number of set TAG(K)=X, DATAK)= new Mem[x]
tag bits per data bits.
W/227/2017 Comp 41 - Fall 2017

SEARCHING FOR TAGS
Associativity: Degree of paralelism used to lookup tags

Fully—Associa'I'ive Cache: |TAG| Data

Incoming
/ I~
Address é? 7 L 1
The extreme in TAG| Data
associaﬁvely: / I~
/
Al TAGS are searched =2 T HIT
in Par'allel
Data items from *anyt
address can be located in TAG| Data
any cache line /NG Data
[(=2 . d Out
/

W/227/2017 Comp 41 - Fall 2017 3

THE OTHER EXTREME

Direc+—mapped: IF it is ih cache it is in exactly one place

Non-associative or "one-way" associative. No parallelism.
Uses only one comparator and ordir\ary RAM For togs:

Addr

Cache Address >
TAG

memory

Data

Addr

Data

Memory

Data

Memory Address

/27/2017

Data

Ht L— out

Comp 41 - Fall 2017

L ow-cost leader

Direct-mapped caches
require a means for
translating "Memory
Addresses' to ‘Cache
Addresses'’. A simple
hash fFunction

DIRECT-MAPPED EXAMPLE

With 8-byte lines, 3 low-order bits determine the byte within the line.
With 4 cache lines, the next 2 bits can be used to decide which line

to use Memory
1024, ,=10000000000, — line = 00, =0, 1000 | 17
1000,,=01111101000, — line=01,=1, 1004 | 23
1040,, = 10000010000, — line =10, =2, 1008 | 11
1012 | 5
Cache 1016 | 29
Lineo | 1024 44 99 1020 | 38
Line1 | 1000 17 23 1024 | 44
Line2 | 1040 1 4 1028 | 99
Line3 | 1016 29 38 1032 | 97
1036 | 25
Tag Data 1040]
W/27/2017 ComP 4 - Fal 2017 1044 4

DIRECT-MAPPED MISS

What happens when we now ask For address 10082

1008,,= 01111110000, — line =10, = 2.,

but earlier we put 1040 there..
1040,, = 10000010000, — line = 10, = 2.,

Line O
Line 1
Line 2
Line 3

/27/2017

Cache
1024 44 99
1000 17 23
1008 11 5
1016 29 38
Tag Data

Comp 41 - Fall 2017

1000
1004
1008
1012
1016
1020
1024
1028
1032
1036
1040
1044

Memory
17

23
11

29
38
44
99
97
25

FULLY-ASSOC. Vs. DIRECT-MAPPED

Fully—associaﬁve N-line cache:

e N ;:? comparators, r'eais+er'9
used For tag/data storage (¥¥%)

e Location A can be stored in ANY
of the N cache lines; ho
‘collisions’

¢ Needs a replacement strategy to
pick- which line to use when
loading new word(s) into cache

~9” 4 COLLISIONs occur when there are

Q) muliple Hems that we'd like to keep
cached, we have room, bu} our
management policies only keeps a subset

of them.

/27/2017

Direc+—mapped N-line cache:

® One tag comparator, SRAM used
for tag/data storage (¥)

e Location A is stored in a
SPECIFIC line of the cache
determined by its address;
address ‘colisions’ possivle

® Replacement 9+r'a+egy hot
heeded: each word can only be
cached in one specific cache line

A

Is there something 4
in~bejween?

Comp 41 - Fall 2017

N-WUAY SET-ASSOCIATIVE CACHE

INCOMING ADDRESS
TARGET INDEX

W

‘N direct-mapped caches’, each with 2t entries of N Ilnes

~

!

N

There are
N Possible ' k t JL

Places that

a 3|ven

item could

be stored

in the
cache

MEM DATA

DATA TO CPU ~——

HT ?ﬂ

/27/2017

Comp 41 - Fall 2017

!

Lines that share a common index are a set

ASSOCIATIVITY VS. MISS RATE

14

\ Associativity
12 —~1-way

10 g —=2-way

Miss . | . \ 4-way
rate \ \\ 8-way
(%) & \\ \\ ~fully assoc.
4

2 s SN
=

dkCachﬂek size (bytes)
8-way i (dmost) as effective as -Pully—aesociaﬁve

1k 2k

W/227/2017 Comp 41 - Fall 2017

HANDLING WRITES

Observation: Most (80+%) of memory accesses are READs, but
writes are essential. How should we handle writes?

Policies:

e WRITE-THROUGH: CPU writes are cached but also written o main

memor-y (9+allina the CPU until write is compleJreaD. Memor'y always
holds “the truth’.

e WRITE-BACK: CPU writes are cached, but not immedia+ely written
to main memory. Memor‘y contents can become ‘stale".

Additional Enhancements:

e WRITE-BUFFERS: For either wri+e-+|nrough or write-back, writes
to main memory are bulfered CPU keeps executing while writes
are comPIeJreol (in order) in the bac\éarour\d.

What combination has the highest PerPormance?

W/227/2017 Comp 41 - Fall 2017 2.0

WRITE-THROVGH

ON REFERENCE TO Mem[X]: Look. For X among tags..

HT: X == TAG() , For some cache line i
READ: return DATAL]
WRITE: change DATALI]; Start Write to Mem[X]

MISs: X hot found in TAG of any cache line
REPLACEMENT sSELECTION:
Select some line k to hold Mem[X]
READ: Read Mem[X]
set TAGLkK] = X DATALK] = Mem[X]
WRITE: Start Write to Mem[X]
set TAGLk] = X, DATALK] = new Mem[X]

/27/2017

Comp 41 - Fall 2017

21

WeriTeE-BACK

ON REFERENCE TO Mem[X]: Look. For X among tags..

HT: X = TAG() , for some cache line |
READ: return DATAC)
WRITE: change DATA(I);, Start Write to Mem[x]

MISs: X hot found in TAG of any cache line
REPLACEMENT sSELECTION:
Select some line k to hold Mem[X]
Write Back: Write Data(k) to Mem[Taa[k]]
READ: Read Mem[X]
set TAGLK] = X DATALK] = Mem[X]
WRITE: Start Write o Mem[X]
set TAGLk] = X, DATALk] = hew Mem[X]

/27/2017

Comp 41 - Fall 2017

22

WRITE-BACk W/ 'DIRTY” BITS

DV TA DAT
8 G A
Dirty and Valid 11 A Meml[A] MAIN
bits are per line
of por oef ‘—’ 8 ~—| MEMORY
01 B Mem[B]
0

What if the cache
has a block-size
larger than one?

A) If only one word in
the line is modified, we

end up writing back
ALL words .

ON REFERENCE TO Mem[X]: Look. for X among tags..
HT: X = TAG() , for some cache line |
READ: return DATA)
WRITE: change DATA(i), Start Write to Mem[X] DLil-
MISS: X not fFourd in TAG of any cache line
REPLACEMENT SELECTION:
Select some line k to hold Mem[X]
£ DIk] == I the Write Datalk) to Meml[Taglk 1]
READ: Read MemlX]; set TAGLk] = X DAT:[qc
WRITE: Start Write to Meml[X] DLk =i
set TAGLk] = X, DATALK] ne’leg\aeJr)&)égn[]

1 = MemBEIREYEWRLIES

2

B) On a MISS, we need
+o READ the line

W/27/2017 Comp 41 - Fall 2017

23

p—_ %
CACHE DESIGN SUMMARY 1]

—

Various design decisions the affect cache Per?ormance

e Block size, exploits spatial locdlity, saves tag H/W, but, it blocks
are too large you can load unneeded items at the expense ol
needed ones

e Write policies

e Write-through - Keeps memory ond cache consistent, but high
memory tra Fic

e Write-back - dlows memory to become STALE, but reduces
memory traf-Fic

No simple answers, in the real-world cache desiﬂns are based on
simulations uc;ir\a memor-y traces.

W/27/2.017 Comp 4l - Fall 2017 24

