VNBOVNDED-SPACE COMPUTATION

DURING 19205 & 19303, much of the =
‘science" part ofF computer science

was being developed (long before
C011[110[0[111110]1011111110111110¢ actual eléctronic computers

existed). Many diFferent
‘Models of Zompui'aﬁon'
ouR were proposed, and the classes of
LoD ‘functions’ that each could compute
oTH were analyzed.

One of these models was the
‘TURING MACHINE",
hamed after Alan Tur'ina (91295 4).

A Turing Machine is just an FSM which receives its
. inputs and writes outputs onto an “infinite tape’. This
Alan Turing simple addition overcomes the FSM's limitation that i can
only keep track of a "bounded number of events'

I/ G/2017 Comp 41 - Fall 2017

TURING MACHINE TAPES AS INTEGERS

Canonhical names for bounded tape conPigumﬁons:

b, b, b, b, b, b, b, b, b,

olo|1]|ojo|1|1]0|0]| |

Look, it's just FSM i
operating on tape j

Note: The FSM part of a Turing Machine is just one of the
FSMs in our enumeration The tape can also be represerﬁed
as an in+eger, but this is trickier. It is natural to represent it
as a binary Fraction, with a binary point just to the lef+ of
the starting position. I +he binary number is rational, we can
aternate bits From each side of the binary point until all
that is left is zeros, then we have an integer.

I/ G/2017 Comp 41 - Fall 2017

TMs AS INTEGER FUNCTIONS

Tur'ir\a Machine T operaﬁn@ on Tape X,
where x = ...I08|a719 b b bbbb

G 5 4 3 21 O

y = T.[x]

X: inPu+ JraPe cor\lliaur'aﬁon
y: ou+Pu+ +aPe wherl TM halts

I wonder if a TM can compute
— EVERY integer function..

I/ G/2017 Comp 41 - Fall 2017

ALTERNATIVE MODELS OF CGMPUTAT?GM

Turing Machines [Turing] Hardware Recursive Functions [Kleene
head

F(0,x) = x oy head

ﬂ_O_LOJ_‘LLO%J_u_I_QLO_LI F(y,0) =y
F(y,x) =x+y+ F(y-1,x-1)
FSM; (define (fact n)
(... (fact (- n 1)) ...)
Kleene (1909-1994)
Turing Production Systems [Post, Markov]
Lambda calculus [Church, Curry, Rosser...] Laﬂg:jse
(¢5 = Mdth S, — [1]
d‘ head AX.)\y XXY $0_’ [$]
_ $ - S8
‘> (lambda (x) (lambda (y) (x (x y)))) S [18, - 8,8,
Post

Church (1903-1995) (1897-1954)

Turing's PhD Advisor

I/G/2.017 Comp 4l - Fall 2017 4

p—_ %
THE)77 CompuTER TNDVUSTRY S'unxsouﬂﬂ

Here's a TM that
computes SQUARE ROOT!

\

Jjojoftjojoftjtiopf)

il

FSM

I/G/ 2017 Comp 4l - Fall 2017 5

AND THE BATTLES RAGED

Here's a Lambda Expression
that does the same thing...

. and here's one that computes
the n™ root for ANY nl

(AN(x n))

I/ G/2017 Comp 41 - Fall 2017

A FUNDAMENTAL RESVLT

Turing's amazing Pr'oo-f—. Each model is capable of computing
exacty the same set of integer Lunctions! None is more
PowerPul than the others.

Proof Technique-. Constructions that
translate between
models

This means that we know of

BiGg IDEA: Computability, independent of o mechanisms (including

: ters) that
computation scheme chosen ?“;,';‘5‘;,?;?2 g z"ﬁ.u':i‘:;

Machine, in terms of the
functions they can compute.

/ 5
2

Church's Thesis:

Every discrete function computable

ANY redlizable machine is
compu+able by some Turing machine.

I/ G/2017 k Comp 41 - "Fall 2017 ‘ -

the contents of the 4ape when the ™M halis.

COMPUTABLE FUNCTIONS i ios st

f(x) computable <=> for some k, all x: o

f(x) = T [x] = f(x) E

Repr‘eserﬁaﬁon tricks: to comPque Pk(x,y) (2 ir\Pquc;)

xy> = integer whose even bits come From x,
aond whose odd bits come from y; whence

f(x, y) = T [<x, y>]

flosas(X.Y) = x "y
foa5(X) = 1 iff x is prime, else O

I/ G/2017 Comp 41 - Fall 2017

TMs, LIKE PROGRAMS, CAN MISBENHAVE |||

It is Poesilole that a given Turinﬁ Machine may not

Pr'ooluce a result For a given input tape. And it may
do so on entering on infFinite Ioop!

Consider the given ™. Current | Tape | Write Next
State | Input| Tape | Move | State

1t scans a tape looking 50 1 1 L | Halt

For the First non-zero so | o] o | R | s0

cell to the r'iath.

What does it do when
given a +aPe that has ﬁ

ho I's to its left?

tape, = ...[0]1]0]0]0[0]0|0[0]O |--
We say this TM does not ﬁ
halt For that inPqu!

I/G/2.017

tape,, = --10|0/0|0]0|0|0|1]0]O |---

Comp 41 - Fall 2017

ENVMERATION OF COMPUTABLE FUNCTIONS

Conceptual table of T™M behaviors..

VERTICAL AXIS: Enumeration of TMs,

HORIZONTAL AXIS: Enumeration of input tapes.

(j k) entry = result of TMK[J'] - integer, or * it it hever halts.

Tur'ina
Machine
FsSMs

|

Turina Machine Tapes

f0) f(1) f(2) f.()
fo | X1 X1 X0
| R1 XO 268
f, ()

Every computable
function is in this
fable, since everything
that we know how to
compute can be
computed by a TM.

Do there exist
well-specified integer
functions that a ™M
can't conrfu’re?

ho

2

The HaH'ina Problem: Given | k: Does TM,_ Halt with input |2

I/G/2.017

Comp 41 - Fall 2017

THE HALTING PROBLEM

The Ha|+ina Function: T [k, j]1 = 1iff TM,[j] halts, else O
Can a Turing machine compute this function?

Suppose, for a moment, T, exists:

k
1 iff T [j] HALTS —
O otherwise TH \
Then we can buid a T, __ " ::bek,fi;g

diagenal of the

N

T
LOOP ~\1 T /h previdus sid
HALT < 0 HT

LOOP if T [k] = 1 (halts)
Thasy[®] HALT if T.1kj = 0 (Ioops)

I/ G/2017 Comp 41 - Fall 2017

I T, is
compu+a|9|e
then so is

T sty

/
U4

WHAT DOES T,

wasry LNASTY] DO?

Anhswer:
TNagw[Nac;er] loops il TNangy[Nac;er] halts
TNangy[Nas’ry] halts it TNang\/[Nasi-y] loops

That's a contradiction.
Thus, T, is not compu’ralale loy a Tur'inﬂ Machine!

Net Result: There are some integer functions that Turing Mochines
simply cannot answer. Since, we know of no better model of
comPquaJrion than a Turinﬂ machine, this implies that there are some
well-speciﬁed problems that dePy computation.

I/ G/2017 Comp 41 - Fall 2017 12

LIMITS OF TVRING MACHINES

A Turing machine is Lormal abstraction that addresses
Fundamental Limits of Computability -
What is means to compute.
The existence ofF uncomPqualole Functions.
We know of no machine more powertul than a Turing mochine
in terms of the functions that it can comPu+e.

But +hey ianor‘e
. Practical codina oF programs
. Performance
- Implemer\Jrabilier
. Proarammalailﬁy

- these latter issues are the primary Focus ofF contemporary
computer science (Remainder of Comp 41

I/ G/2017 Comp 41 - Fall 2017

COMPUTABILITY VS, PROGRAMMABILITY |||

Jolol1lolol1l1lolol Sf

FSM

Factorization

Jolol1lolol1l1]lolol f
Jolol1lolol1l1lolol f
FSM s
FSM
Multiplication i -
P Is it prime?
Jolol1lolol1l1]lolol f
7 ’/’
FSM g
Sorting %

I/G/2.017

Recall Church's thesis:

"Any discrete Function computable by
ANY readlizable machine is comPquable
Iay some Turing Machine'

We've defined what it means to COMPUTE
(Whatever a TM can compute), but, a
Turing machine is no’rhinﬂ more that an FSM
that receives inputs from and outputs
onto, an inkinite tape.

sSo far, we've been dec;ianing a hew FSM
Lor each new Turing machine that we
encounter.

Wouldn't it be nice if we could desiﬁn a
mor-e 3eneral—|9urpoc;e Tur'ina machine<

Comp 4l - Fall 2017 14

PROGRAMS AS DATA

What i+ we encoded the description ofF the FSM on our tape, and

then wrote a general purpose FSM +to read the tape and EMULATE

the behavior of the encoded machine? We could just store the
state-transition table £or our TM on the tape and then deeign a hew
TM that makes reference to it as often as it likes. i seems
possible that such a machine could be built.

"T} is pessible to invent a single machine \g\\\\‘ & (.
which can be used to compute any —= —
computable sequence. If this machine U is - T
supplied with a tape on the beginning of

which is written the SD ["s+::3c:rd
description” of an action table] of some
computing machine M, then U will compute
the same sequence as M

- Turing 1936 (Proc of the Londen
Mathematical Seciety, Ser. 2, Vol. 42)

I/ G/2017 Comp 41 - Fall 2017

FUNDAMENTAL RESULT: VNIVERSALITY

Define ‘Universa Function“ u(x,y) = Tx(y) For every x vy ..
Surprise! u(x,y) IS COMPUTABLE,
hence u(x,y) = Tu(<x,y>) for some U.

. INFINITELY many UTMs ..
Any one of them can

Universal Turing Machine (UTM): evaluate any computable
function by simulating/
TU [« Y, Z >] = Ty[z] emulating/interpreting

the actions of Tur"lnﬂ

L L K Tape = "data" machine 3iven to it

input.
TM = "program" az an Inpd

"interpreter" UNIVERSALITY:

PARADIGM For General-Purpose Computer! Basic requirement
‘ 2 For a general purpose

compu+er'

I/ G/2-017 Comp 41 - Fall 2017 &

DEMONSTRATING VNIVERSALITY 1l

Suppose you've desianed Turing Machine T, and want to show that its universal.

APPROACH:)
L Find some khowh universal machine, say T, Turi ng
2. Devise a program, P, to simulate T, on T Complete

T L<Px>] = T [x] For dl x
3. Since T [<yz>] = T [z] it Follows that, For all y

T, [<P,<y,z>>] = T,[<y.z>] =

T;El yd|

CONCLUSION: Armed with program P, machine T, can mimic the
behavior of an ar'loiJrr'ar'y machine T, oPer'aJrir\.a oh an ar'loiJrr'ar'y ir\Pu+
+ape v

HENCE T, con comPque any Function that can be comPqued by any
Turinﬁ Machine.

I/ G/2017 Comp 41 - Fall 2017 7

NEXT TIME

Enough +heor'y already, let's build someJrhina!

1d SOMETHING

DEHEE‘EE

KEEP
CALM
AND
BUILD
SOMETHING

I/ G/2017 Comp 41 - Fall 2017

=

BuILDING A COMPUTER

I wonder where
this goes?

I/ G/2017 ComP 41 - Fall 2017

ANOTHER FUNCTIONAL VNITS

We'll nheed Funhctional units Fast memories. We begin by Iauildihﬂ "wide'

r‘eaieJrer‘G. First, we'll add a control that ‘enadbles" the |oadina ofF a register.

D

5 5 5

EN _[\} ¥ —EN EN EN | . —EN EN

—~ —~ —~ —~ —~

CLK D Q Q Q Q Q

Q | | | | |

EN CLK[q, [a.,
Q An N-bit wide

Keaisi-er with enable

iE
7

—EN

—

= o] X| X| X| X| X| X} ©O

- o - o - o - o z

= = o] o] X| X| X| X

N N N N ol a4l ol o

X| X| =| o] =] o] =»| ©

I/ G/2017 Comp 41 - Fall 2017

20

A REGISTER FILE

We can dlso construct an addressable array ofF reais’rer‘e

Write Addr[N:0] 01 ... 2N
Data in[B:0]
Write Enable &; ?#; ﬁ;
EN D EN D EN D
Clk —~ Q —~ Q] ~ Q
Read Addr[N:0] 0 1 2% Din[B:0]
—~—{WA[N:0]
l ——{RA[N:0]
Data out[B:0] —WE
~ [Dout[B:0]

I/ G/2017 Comp 41 - Fall 2017

!

21

A MULTI-PORTED REGISTER FILE

We can add multiple read ports Iay simply addinﬂ more output MUXs

Write Addr[N:0]

01 .. 2N1

Write Data[B:0]

Write Enable &; ?#; ﬁ;
EN EN L

Clk —~

00
V
00
V

Read 0 1 - 2N_1 Read 0 1 = .2N_1 Read 0 1 — .2N_1 . WD[BO]
Addr — Addr X Addr X B e
A[N:0] l B[N:0] l C[N:0] l 7 RB{N:o}
Data Data Data —>{RC[N:0]
out Out Out —{WE
A[B:0] B[B:0] C[B:0] 1 DA[B:0] DB[B:0] DC[B:0]
I/G/2.017 Comp 4l - Fall 2017 22

THis 1s1

This is where our 9+ory ac+ual\y
Iaeains. We are nhow ready to
build a computer.

The ir\ﬁredierﬁrs are al in place.
is time to build a legitimate
computer. One that executes
instructions, much the way any
desktop, tablet, smartphone, or
other computer does.

I/ G/2017 Comp 41 - Fall 2017

23

THE ARM? I5A

R type:

| type:
D type:
X type:

B type:

Five key instruction Formats:

I/G/2.017

4 3 4 1 4 4 5 21 4
Cond 000 | Opcode | S Rn Rd Shift (L]0 Rm
4 3 4 1 4 4 4 8
Cond 001 Opcode | S Rn Rd Shift Imm

4 3 5 4 4 12
Cond 010 | AddrMode Rn Rd Imm12

4 3 5 4 4 5 21 4
Cond 011 | AddrMode Rn Rd Shift (L]0 Rm

4 3 1 24
Cond 101 | L Imm24

0) ALU with two register operands

1) ALU with a register and an immediate operand
2) Load/store with an immediate offset

3) Load/Store with a register offFset

5) Branch

Comp 41 - Fall 2017

DESIGN APPROACH

Incremental Featurism:

Each instruction class can be implemerﬂ-ed usirp our component
repertoire. we'll try implementing dota paths For each class
individua\\y, ond merge them as we go (uc;inﬂ MUXes, etc).

Steps: Our bag ok parts:
I 3—Oper‘and ALU instructions _
2. ALU w/immediate instructions S | Registers
2. Load & Store Instructions
3. Branch instructions o1/ Muxes

4 Leftovers

5. Reset & Exceptions A" alu °/ ALU & adders w

RA1 RA2

A cegist A WD

WE elg'lls er Instruction A Data
e D Memory Memo

(3-port) o Y

RIW

WD

> RD1 RD2

I/G/2.017 Comp 4l - Fall 2017 Memories 25

INSTRUCTION FETCH/DECODE

e Fetch an instruction and decode it

Can be built

using only
half-add

, |

—

PC

Instruction
Memory

Addr

Data

32

4&3

Cond

e

format
opcode,S

I/G/2.017

use PC as memory address

add 4 to current PC,

and uPdaJre PC on the next

rising clock

fetch instruction from memory

o We'l use some instruction
Fields direc+|y
(reﬂichrer humbers, constants)

o use format, opcode bits, and a
few assorted bits to generate

PC, T controls

o
o
o
PC, PC
LT LD
A B A B A B
FA FA FA
CcC S CcC S CcC S
| |

Comp 41l - Fall 2017 26

R-TYPE DATA PROCESSING
ALU instructions with register operands |

Rd - register File write address > PC
Rh, Rm - register source operands Adar
. . . Instruction
shift or Rs - Optiohal shift of Rm Memory
Data
_ . _ 2 T
LA - direction and type of shift RAT71] —
om0-wB) ey " o
- - Cond[31:28 H . WD |
S-bit - controls upclaJre ofF Psk 0010 - SUB A :F’éfles?i vgéF],WE Register flleC <
0011 - RSB pcode[24: DA DB D
0100 - ADD Shift[11:7]
Func decoding From ALU lecture J%-A0c| | %7
0111 'RSC L [opcoder24:211 () \rovasrrar AI_l/J o
. . 1000-T T . Func Sub/Rsb
Register write back controlled 1001-TEQ | [N
1010 - CMP 7
i 1011 - CMN =
by WEKF |OaIC 1100 - ORR S[20] >
@ 1101-Mov| Y o
I I I 1110 - BIC
WERF. 1111'MV_N, 4 3 4 1 4 4 5 21 4

0

Ju
i Rm‘

“ Rtype:‘ Cond ‘ 000 |Opcode|S| Rn I Rd ‘Shift

I/ G/2017 Comp 41 - Fall 2017 27

NEXT TIME

More instructions..

I/G/2.017

SVEDISH MEATBALL

Q\%@E?@
%W

zzzzzzzzz

Comp 41 - Fall 2017

28

WERF LosIC

Not every instruction
uPdaJres a destination
regierer

CMP, CMN, TST, TEQ
don’+ uPolaJre any
regierer

Conditional execution is
controlled by the
WERF logic. WE is set
only i the condition is
met. Otherwise it is
elFectively annulled.

I/G/2.017

il

I 5o g g |y |y WE Notes

X X X X 1 0 0 cmp,cmn,tst,teq
1 1 1 0 0 X 1 Cond = AL
1 1 1 0 X 1 1 Cond = AL
0 0 0 0 0 X z Cond = EQ
0 0 0 0 X 1 z Cond = EQ
0 0 0 1 0 X 1z Cond = NE
0 0 0 1 X 1 1z Cond = NE
1 1 0 0 0 X I(Z | (NAV)) Cond = GT
1 1 0 0 X 1 I(Z | (NAV)) Cond = GT
1 1 0 1 0 X Z| (NMV) Cond = LE
1 1 0 1 X 1 Z| (NMV) Cond = LE

Comp 41 - Fall 2017

29

