UNBOUNDED-SPACE COMPUTATION
DURING 1920s \& 1930s, much of the "science" part of computer science was being developed (long before
$0|1| 1|0| 0|1| 1|1| 0|1| 0|1| 1|1| 0|1| 1 \mid 0\}$ actual electronic computers existed). Many different
"Models of Computation" were proposed, and the classes of "functions" that each could compute were analyzed.
One of these models was the 'TURING MACHINE", named after Alan Turing (1912-1954).

A Turing Machine is just an FSM which receives its inputs and writes outputs onto an "infinite tape". This simple addition overcomes the FSM's limitation that it can only keep track of a "bounded number of events".

turinc Machine Tapes as Intecers

Canonical names for bounded tape configurations:

Note: The FSM part of a Turing Machine is just one of the FSMs in our enumeration. The tape can also be represented as an integer, but this is trickier. It is natural to represent it as a binary fraction, with a binary point just to the left of the starting position. If the binary number is rational, we can alternate bits from each side of the binary point until all that is left is zeros, then we have an integer.

Look, it's just FSM i operating on tapej

TMS AS INTEGER FUNCTIONS
Turing Machine T_{i} operating on Tape x, where $x=. . . ~_{8} b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$

$$
\begin{aligned}
& y=T_{i}[x] \\
& x: \text { input tape configuration } \\
& y \text { : output tape when } T M \text { halts }
\end{aligned}
$$

alternative madels af computationi

Turing Machines [Turing] Hardware
 Recursive Functions [Kleene]

```
\[
F(0, x)=x
\]
\[
F(y, 0)=y
\]
\[
F(y, x)=x+y+F(y-1, x-1)
\]
\[
\text { (define (fact } n \text { ) }
\]
(... (fact (- n 1)) ...)
```


Kleene (1909-1994)

Lambda calculus [Church, Curry, Rosser...]

\(\begin{gathered}Math
head\end{gathered} \lambda x . \lambda y . x x y\)

(lambda (x) (lambda (y) (x (x y))))
Production Systems [Post, Markov]

THE ITT COMPUTER INDUSTRY SHAKEOUT|l|l|

AND THE BATTLES RAGED

Here's a Lambda Expression that does the same thing...
($\boldsymbol{\lambda}(\mathrm{x}) \quad$.
... and here's one that computes the $n^{\text {th }}$ root for ANY n !
($\lambda(x \mathrm{n})$.....)

A fundamental result

Turing's amazing proof. Each model is capable of computing exactly the same set of integer functions. None is more powerful than the others.

Proof Technique: Constructions that translate between models

BIG IDEA: Computability, independent of This means that we know of computation scheme chosen no mechanisms (including computers) that are more "powerful" than a Turing Machine, in terms of the functions they can compute.

Church's Thesis:

Every discrete function computable
by ANY realizable machine is computable by some Turing machine.

COMPUTABLE FUNCTIONS

The "input" to our computable function will be given on the initial tape, and the "output" will be the contents of the tape when the TM halts.

$f(x)$ computable <=> for some k, all x :

$$
f(x)=T_{k}[x] \equiv f_{k}(x)
$$

Representation tricks: to compute $f_{k}(x, y)$ (2 inputs) $\langle x, y\rangle \equiv$ integer whose even bits come from x, and whose odd bits come from y; whence

$$
f_{k}(x, y) \equiv T_{k}[\langle x, y\rangle]
$$

$f_{12345}(x, y)=x^{*} y$
$f_{23456}(x)=1$ iff x is prime, else 0

TMS, LIKE PROGRAMS, CAN MISBEHAVE

It is possible that a given Turing Machine may not produce a result for a given input tape. And it may do so by entering an infinite loop!
Consider the given TM.
It scans a tape looking for the first non-zero

Current State	Tape Input	Write Tape	Move	Next State
SO	1	1	L	Halt
SO	0	0	R	SO

What does it do when given a tape that has no I's to its left?

We say this TM does not

$$
\begin{gathered}
\operatorname{tape}_{256}=\ldots \text { 이이이이이이이1|잉 } \cdots \\
\operatorname{tape}_{8}=\ldots \text { 이1|이이이이이이잉 } \cdots
\end{gathered}
$$ halt for that input!

ENUMERATION OF COMPUTABLE FUNCTIONS

Conceptual table of TM behaviors...
VERTICAL AXIS: Enumeration of TMS.
HORIZONTAL AXIS: Enumeration of input tapes.
(j, k) entry $=$ result of $T M_{k}[j]$-- integer, or $*$ if it never halts.
Turing Machine Tapes

Turing Machine FSMs		$\mathrm{f}_{\mathrm{i}}(0)$	$\mathrm{f}_{\mathrm{i}}(1)$	$\mathrm{f}_{i}(2)$...	$\mathrm{f}_{\mathrm{i}}(\mathrm{j})$...
	f_{0}	$3{ }^{3}$	$\times 31$	X*0	\ldots	...	
	f_{1}	421	*0	86\%	\ldots	...	
	\ldots	\ldots	
\downarrow	f_{k}	\ldots	$f_{k}(\mathrm{j})$	
	...						

Every computable function is in this table, since everything that we know how to compute can be computed by a TM.

Do there exist well-specified integer functions that a TM can't compute?

The Halting Problem: Given j, k : Does $T M_{k}$ Halt with input j ?

the halting problem

The Halting Function: $T_{H}[k, j]=1$ iff $\mathrm{TM}_{k}[j]$ halts, else 0 Can a Turing machine compute this function?

Suppose, for a moment, T_{H} exists:

WHAT DOES T NASYY [NASTY] DO?

Answer:
$T_{\text {Nasty }}$ [Nasty] loops if $T_{\text {Nasty }}[$ Nasty] halts
$T_{\text {Nasty }}\left[\right.$ Nasty] halts if $T_{\text {Nasty }}[$ Nasty] loops
That's a contradiction.
Thus, T_{H} is not computable by a Turing Machine!

Net Result. There are some integer functions that Turing Machines simply cannot answer. Since, we know of no better model of computation than a Turing machine, this implies that there are some well-specified problems that defy computation.

LIMITS OF TURING MACHINES

A Turing machine is formal abstraction that addresses

- Fundamental Limits of Computability -

What is means to compute.
The existence of uncomputable functions.

- We know of no machine more powerful than a Turing machine in terms of the functions that it can compute.

But they ignore

- Practical coding of programs
- Performance
- Implementability
- Programmability
these latter issues are the primary focus of contemporary computer science (Remainder of Comp 4॥)

COMPutability vs. Programmability \|in

Factorization

Recall Church's thesis:
"Any discrete function computable by ANY realizable machine is computable by some Turing Machine"
We've defined what it means to COMPUTE (whatever a TM can compute), but, a Turing machine is nothing more that an FSM that receives inputs from, and outputs onto, an infinite tape.
so far, we've been designing a new FSM for each new Turing machine that we encounter.

Wouldn't it be nice if we could design a more general-purpose Turing machine?

Programs as data

What if we encoded the description of the FSM on our tape, and then wrote a general purpose FSM to read the tape and EMULATE the behavior of the encoded machine? We could just store the state-transition table for our TM on the tape and then design a new TM that makes reference to it as often as it likes. It seems possible that such a machine could be built.
"It is possible to invent a single machine which can be used to compute any computable sequence. If this machine U is supplied with a tape on the beginning of which is written the $5 . D$ ["standard description" of an action table] of some computing machine M, then U will compute the same sequence as $M .{ }^{\prime \prime}$ - Turing 1936 (Proc of the London Mathematical Society, Ser. 2, Vol. 42)

Fundamental result: universality
Define "universal Function": $u(x, y)=T_{x}(y)$ for every x, y.. surprise! $u(x, y)$ is COMPUTABLE, hence $u(x, y)=T_{u}(\langle x, y>)$ for some u.

NFINITELY many UTMs...
Universal Turing Machine (uTM):

PARADIGM for General-Purpose Computer!
UNVERSALTTY:
Basic requirement for a general purpose computer

DEMONSTRATING UNIVERSALITY

Suppose you've designed Turing Machine T_{K} and want to show that its universal. APPROACH:

1. Find some known universal machine, say T_{u}
2. Devise a program, P, to simulate T_{u} on T_{k} : $T_{k}[\langle P, x\rangle]=T_{u}[x]$ for all x.
3. since $T_{u}[\langle y, z\rangle]=T_{y}[z]$, it follows that, for all y and z

$$
T_{K}[\langle P,\langle y, z\rangle\rangle]=T_{U}[\langle y, z\rangle]=
$$

$$
T_{y}^{k}[z]
$$

CONCLUSION: Armed with program P, machine T_{K} can mimic the behavior of an arbitrary machine T_{y} operating on an arbitrary input tape z.
HENCE T_{K} can compute any function that can be computed by any Turing Machine.

Next Time

Enough theory already, let's build something!

BUILDING A COMPUTER

ANOTHER FUNCTIONAL UNITS

We'll need functional units fast memories. We begin by building "wide" registers. First, we'll add a control that "enables" the loading of a register.

a register file

We can also construct an addressable array of registers

a multi-ported register file

We can add multiple read ports by simply adding more output MuXs

THIS IS IT!

This is where our story actually begins. We are now ready to build a computer.

The ingredients are all in place. It is time to build a legitimate computer. One that executes instructions, much the way any desktop, tablet, smartphone, or other computer does.

THE ARM7 I5A

D type:	Cond	010	AddrMode	Rn	Rd	Imm12			
	43		5	4	4	5	2	1	4
X type:	Cond	011	AddrMode	Rn	Rd	Shift	L A	0	Rm
	43		1		24				
B type:	Cond	101	L		Imm				

Five key instruction formats: 0) ALU with two register operands

1) ALu with a register and an immediate operand
2) Load/Store with an immediate offset
3) Load/Store with a register offset
4) Branch

DESIGN APPROACH

Incremental Featurism:
Each instruction class can be implemented using our component repertoire. We'll try implementing data paths for each class individually, and merge them as we go (using MuXes, etc).

Steps:

1. 3-Operand ALU instructions
2. ALu w/immediate instructions
3. Load \& Store instructions
4. Branch instructions
5. Leftovers
6. Reset \& Exceptions

Our bag of parts:
\square
0

ALU \& adders

InSTRUCTION FETCH/DECODE

- Fetch an instruction, and decode it

Comp 4II - Fall 2017

R-type Data processing
ALL instructions with register operands
Rd - register file write address
Rn, Rm - register source operands Shift or Rs - Optional shift of Rm

LA - direction and type of shift
S-bit - controls update of PSR
Func decoding from ALI lecture
Register write back controlled by WERF logic

$11 / 6 / 2017$
Comp 4II - Fall 2017

next time

More instructions...

WERF LOGIC

Not every instruction updates a destination register

CMP, CMN, TST, TEQ don't update any register

Conditional execution is controlled by the WERF logic. WE is set only if the condition is met. Otherwise it is effectively annulled.

I_{31}	I_{30}	I_{29}	I_{28}	I_{24}	I_{23}	WE	Notes	
X	X	X	X	1	0	0	cmp,cmn,tst,teq	
1	1	1	0	0	X	1	Cond $=$ AL	
1	1	1	0	X	1	1	Cond $=$ AL	
0	0	0	0	0	X	Z	Cond $=\mathrm{EQ}$	
0	0	0	0	X	1	Z	Cond $=\mathrm{EQ}$	
0	0	0	1	0	X	$!$ \%	Cond $=$ NE	
0	0	0	1	X	1	$!$ \%	Cond $=$ NE	
...	\ldots	...		
1	1	0	0	0	X	$!\left(\mathrm{Z} \mid\left(\mathrm{N}^{\wedge} \mathrm{V}\right)\right.$)	Cond $=\mathrm{GT}$	
1	1	0	0	X	1	$!\left(\mathrm{Z} \mid\left(\mathrm{N}^{\wedge} \mathrm{V}\right)\right.$)	Cond $=\mathrm{GT}$	
1	1	0	1	0	X	Z \\| ($\mathrm{N}^{\wedge} \mathrm{V}$)	Cond $=$ LE	
1	1	0	1	X	1	Z \\| (${ }^{\wedge} \mathrm{V}$)	Cond $=$ LE	

