
11/1/2017 Comp 411 - Fall 2017

Designing Sequential Logic

1

Sequential logic is used when the solution to some design
problem involves a sequence of steps:

How to open digital combination lock w/ 3 buttons (“start”, “0” and “1”):

 Step 1: press “start” button
 Step 2: press “0” button
 Step 3: press “1” button
 Step 4: press “1” button
 Step 5: press “0” button

Information
remembered between
steps is called state.
Might be just what
step we’re on, or
might include results
from earlier steps
we’ll need to complete
a later step.

11/1/2017 Comp 411 - Fall 2017

Implementing a “State Machine”

2

Current State “start” “1” “0” Next State unlock
 --- 1 --- --- start 0
start 0 0 1 digit1 0
start 0 1 0 error 0

error 0 --- --- error 0

start 0 0 0 start 0
digit1 0 1 0 digit2 0
digit1 0 0 1 error 0
digit1 0 0 0 digit1 0
digit2 0 1 0 digit3 0

digit3 0 0 1 unlock 0
…
…
unlock 0 1 0 error 1
unlock 0 0 1 error 1
unlock 0 0 0 unlock 1

6 different states → encode using 3 bits

000
000

001

010

011

100
100

101

001

000
001
101

101

011

100

101
101

101

010
000 000

001 001

100 100

This is starting
to look like a
PROGRAM

This flavor of
“truth-table” is

called a
“state-transition

table”

11/1/2017 Comp 411 - Fall 2017

Now, We Do It With Hardware!

3

ROM
64x4

unlock

Next stateCurrent state

“1” button

“0” button

“start” button

Trigger update periodically (“clock”)

33

6 inputs →26 locations
each location supplies 4 bits

Q D

11/1/2017 Comp 411 - Fall 2017

Abstraction du jour:

A Finite State Machine

4

A Finite State Machine has:

Clocked
FSM

m n

● k States S1, S2, … Sk (one is the “initial” state)

● m inputs I1, I2, … Im
● n outputs O1, O2, … On

● Transition Rules, S’(Si,I1, I2, … Im)
for each state and input combination

● Output Rules, O(Si) for each state

11/1/2017 Comp 411 - Fall 2017

Discrete State, Discrete Time

5

ROM

NEXTSTATE

inputs outputs

ss
s state bits → 2s possible states

Two design choices:
 (1) outputs *only* depend on state
 (2) outputs depend on inputs + state

 (Moore)
 (Mealy)

While a ROM is shown here
in the feedback path any
form of combinational logic
can be used to construct a
state machine.

Clock

STAT
E
NEXT

Clock
Period

1

Clock
Period

2

Clock
Period

3

Clock
Period

4

Clock
Period

5

11/1/2017 Comp 411 - Fall 2017

State Transition Diagrams

6

S
U=0

D1
U=0

D2
U=0

D3
U=0

U
U=1

E
U=0

0 1 1 0

1 0,1
0 0 1

0,1,

S S S S

S

S, A state transition diagram is
an abstract “graph”
representation of a “state
transition table”, where each
state is represented as a
node and each transition is
represented as a as an arc.
It represents the machine’s
behavior not its
implementation!

XXX
U=0

NAME
of

state

OUTPUT when
in this state

(Moore)

0
INPUT

or INPUTs
causing

transition

Heavy circle means
INITIAL state

= no buttons
pressed

11/1/2017 Comp 411 - Fall 2017

Example State Diagrams

7

Arcs leaving a state must be:
 (1) mutually exclusive

can only have one choice for any given input value
 (2) collectively exhaustive

every state must specify what happens for each possible
input combination. “Nothing happens” means arc back to itself.

MOORE Machine:
Outputs on States

MEALY Machine:
Outputs on Transitions

S0 S1
0

0

S20

1

11 0 0
1

S0 S1
0/0

0/0

S20/1

1/1

1/0
1/0

11/1/2017 Comp 411 - Fall 2017

Next Time

Counting state machines

8

11/1/2017 Comp 411 - Fall 2017

FSMs and Turing Machines

● Ways we know to compute
○ Truth-tables = combinational logic
○ State-transition tables = sequential logic

● Enumerating FSMs
● An even more powerful model:

a “Turing Machine”
● What does it mean to compute?
● What can’t be computed
● Universal TMs = programmable TM

9

Alan Turing
(1912-1954)

Kleene
(1909-1994)

Post
(1897-1954)

Church (1903-1995)
Turing’s PhD Advisor

11/1/2017 Comp 411 - Fall 2017

Let’s play State Machine

10

Let’s emulate the behavior specified by the state machine
shown below when processing the following string from
LSB to MSB.

3910 = 01001112

S0 S1
0

0

S20

1

11 0 0
1

 State Input Next Output
T=0 S0 1 S1 0
T=1 S1 1 S0 1
T=2 S0 1 S1 0
T=3 S1 0 S2 0
T=4 S2 0 S1 0
T=5 S1 1 S0 1
T=6 S0 0 S0 1

It looks to me like this
machine outputs a 1
whenever the bit sequence
that it has seen thus far
is a multiple of 3.
(Wow, and FSM can
divide by 3!)

input order

11/1/2017 Comp 411 - Fall 2017

FSM Party Games

11

ROM
kk

1. What can you say about
the number of states?

2. Same question:
FSM1

m-states
FSM2
n-states

x y z

3. Here's an FSM.
Can you discover its rules?

States ≤ 2k

States ≤ m × n

11/1/2017 Comp 411 - Fall 2017

What’s My Transition Diagram?

12

vs.

1
1

0
1 1

0

1

0

1

00
"1-1-1-1" =Surprise!

• If you know NOTHING about the FSM, you’re never sure!

• If you have a BOUND on the number of states, you can discover
its behavior:

 K-state FSM: Every (reachable) state
 can be reached in < 2i x k steps.

BUT ... states may be equivalent!

0
0

10=OFF, 1=ON?
1

11/1/2017 Comp 411 - Fall 2017

FSM Equivalence

13

10
1

0
1 0

1 1

0

1

0

1

00
vs
.

ARE THEY DIFFERENT?
NOT in any practical sense! They are EXTERNALLY
INDISTINGUISHABLE, hence interchangeable.

FSMs are EQUIVALENT iff every input
sequence yields identical output sequences.

ENGINEERING GOAL:
• HAVE an FSM which works...
• WANT simplest (ergo cheapest) equivalent FSM.

11/1/2017 Comp 411 - Fall 2017

Housekeeping issues…

14

ROM
or

gates
NEXTSTATE

inputs outputs

ss

1. Initialization? Clear the memory?

2. Unused state encodings?
 - wastes ROM (use gates)
 - meaning?

3. Synchronizing input changes with
 state update?

4. Choosing encodings for each state?That symbol is
starting to
register

11/1/2017 Comp 411 - Fall 2017

2-Types of Processing Elements

15

Combinational Logic:
 Table look-up, ROM

Finite State Machines:
 ROM with State Memory

Thus far, we know of nothing
more powerful than an FSM

Addr
Data

i o

Addr
Data

i o

s

Fundamentally,
everything
that we’ve

learned so far
can be done
with a ROM

and registers

Recall that there are precisely

22, i-input combinational functions.
A single ROM can store ‘o’ of them.

i

11/1/2017 Comp 411 - Fall 2017

FSMs as Programmable Machines

16

ROM-based FSM sketch:
Given i, s, and o, we need a ROM
organized as:

 2i+s words x (o+s) bits

So how many possible
 i-input,
 o-output,
 FSMs with
 s-state bits
 exist?

i

s

0...01
0...00 0...00 10110 011

o

2i+s

sN+1 os
N

i
input
s

outputs

2 (o+s)2i+s

(some may be
equivalent)

An FSM’s behavior is completely
determined by its ROM contents.

The number of “bits”
in the ROM

All possible
settings of the
ROM’s contents

to: 1 or 0

Recall how we were able to “enumerate”
or “name” every 2-input gate?

Can we do the same for FSMs?

How many state machines are there with
1-input, 1-output, and 1 state bit?

2(1+1)4 = 28 = 256

11/1/2017 Comp 411 - Fall 2017

FSM Enumeration

17

GOAL: List all possible FSMs in
some canonical order.
 • INFINITE list, but
 • Every FSM has an entry in
 and an associated index.

0...01
0...00 0...00 10110 011

sN+1osNi
input
s

outputs

28

FSMs

264

Every possible FSM can be associated with a unique number.
This requires a few wasteful simplifications. First, given an
i-input, s-state-bit, and o-output FSM, we’ll replace it with its
equivalent n-input, n-state-bit and n-output FSM, where n is the
greatest of i, s, and o. We can always ignore the extra
input-bits, and set the extra output bits to 0. This allows us to
discuss the ith FSM

These are the FSMs with 1 input
and 1 output and 1 state bit.
They have 8-bits in their ROM.

18,446,744,073,709,551,872

3.9402 x 10115

11/1/2017 Comp 411 - Fall 2017

Some FavoRites

18

FSM837 modulo 3 state machine
FSM1077 4-bit counter
FSM1537 Combination lock
FSM89143 Cheap digital watch
FSM22698469884 MIPs processor
FSM23892749274 ARM7 processor
FSM78436378389 Intel I-7 processor (Skylake)
FSM78436378390 Intel I-7 processor (Kaby lake)

11/1/2017 Comp 411 - Fall 2017

Can FSMs Compute Every Binary Function?

19

Nope!
There exist many simple problems that cannot be computed by FSMs.
For instance:

Checking for balanced parentheses
(()(()())) - Okay
(()())) - No good!

PROBLEM: Requires ARBITRARILY many states, depending on input.
Must "COUNT" unmatched LEFT parens.

But, an FSM can only keep track of a “bounded” number of events.
(Bounded by its number of states)

Is there another form of logic that can solve this problem?

A function is specified by a
deterministic output
relationship for any given
series of inputs, starting
from a known initial state.

11/1/2017 Comp 411 - Fall 2017

Unbounded-Space Computation

20

DURING 1920s & 1930s, much of the
“science” part of computer science
was being developed (long before
actual electronic computers
existed). Many different
“Models of Computation”

were proposed, and the classes of
“functions” that each could compute
were analyzed.

One of these models was the
“TURING MACHINE”,

named after Alan Turing (1912-1954).

Alan Turing

S
1

 A Turing Machine is just an FSM which receives its
inputs and writes outputs onto an “infinite tape”. This
simple addition overcomes the FSM’s limitation that it can
only keep track of a “bounded number of events”.

S
2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

0|1|1|0|0|1|1|1|0|1|0|1|1|1|0|1|1|0

11/1/2017 Comp 411 - Fall 2017

A Turing Machine Example

Turing Machine Specification
 • Infinite tape
 • Discrete symbol positions
 • Finite alphabet – say {0, 1}
 • Control FSM
INPUTS:
 Current symbol on tape
OUTPUTS:

write 0/1
move tape Left or Right

• Initial Starting State {S0}
• Halt State {Halt}

21

A Turing machine, like an FSM, can be
specified via a state-transition table.
The following Turing Machine implements
a unary (base 1) counter.

0|0|0|0|1|1|1|1|0|0 …… 1

11/1/2017 Comp 411 - Fall 2017

Turing Machine Tapes as Integers

22

Canonical names for bounded tape configurations:

FSM i

0 1 1 00 0 1 0 0

Look, it’s just FSM i
operating on tape j

b8 b6 b4 b2 b0 b1 b3 b5 b7

Note: The FSM part of a Turing Machine is just one of the
FSMs in our enumeration. The tape can also be represented
as an integer, but this is trickier. It is natural to represent it
as a binary fraction, with a binary point just to the left of
the starting position. If the binary number is rational, we can
alternate bits from each side of the binary point until all
that is left is zeros, then we have an integer.

11/1/2017 Comp 411 - Fall 2017

TMs as Integer Functions

23

Turing Machine Ti operating on Tape x,
where x = …b8b7b6b5b4b3b2b1b0

I wonder if a TM can compute
EVERY integer function...

y = T [x]i
x: input tape configuration
y: output tape when TM halts

11/1/2017 Comp 411 - Fall 2017

Alternative Models of Computation

24

Turing Machines [Turing]

FSM i

0 1 1 00 0 1 0 0

Turing

Hardware
head

Lambda calculus [Church, Curry, Rosser...]

λx.λy.xxy

(lambda(x)(lambda(y)(x (x y))))

Church (1903-1995)
Turing’s PhD Advisor

Math
head

Theory
head

Production Systems [Post, Markov]

$0 → []
$ → [$]
$ → $$
$i[]$j → ij

Post
(1897-1954)

Language
head

Recursive Functions [Kleene]

(define (fact n)
 (... (fact (- n 1)) ...)

Kleene (1909-1994)

F(0,x) = x
F(y,0) = y
F(y,x) = x + y + F(y-1,x-1)

11/1/2017 Comp 411 - Fall 2017

The 1
st
 Computer Industry Shakeout

25

Here’s a TM that
computes SQUARE ROOT!

FSM

0 1 1 00 0 1 0 0

11/1/2017 Comp 411 - Fall 2017

And the Battles Raged

26

Here’s a Lambda Expression
that does the same thing...

... and here’s one that computes
the nth root for ANY n!

(λ(x))

(λ(x n))

11/1/2017 Comp 411 - Fall 2017

A Fundamental Result

27

Turing’s amazing proof: Each model is capable of computing
exactly the same set of integer functions! None is more
powerful than the others.

Proof Technique: Constructions that
 translate between

 models

BIG IDEA: Computability, independent of
computation scheme chosen

This means that we know of
no mechanisms (including
computers) that are more
“powerful” than a Turing
Machine, in terms of the

functions they can compute.

Church's Thesis:
Every discrete function computable

by ANY realizable machine is
computable by some Turing machine.

1

11/1/2017 Comp 411 - Fall 2017

Computable Functions

28

Representation tricks: to compute fk(x,y) (2 inputs)
<x,y> ≡ integer whose even bits come from x,

 and whose odd bits come from y; whence

f12345(x,y) = x * y
f23456(x) = 1 iff x is prime, else 0

f(x) computable <=> for some k, all x:
 f(x) = TK[x] fK(x)

fK(x, y) TK[<x, y>]

The “input” to our computable function will be
given on the initial tape, and the “output” will be
the contents of the tape when the TM halts.

11/1/2017 Comp 411 - Fall 2017

TMs, like programs, can misbehave

29

It is possible that a given Turing Machine may not
produce a result for a given input tape. And it may
do so by entering an infinite loop!

Consider the given TM.

It scans a tape looking
for the first non-zero
cell to the right.

What does it do when
given a tape that has
no 1’s to its left?

We say this TM does not
halt for that input!

0|0|0|0|0|0|0|1|0|0 … tape256 = …

… tape8 = … 0|1|0|0|0|0|0|0|0|0

11/1/2017 Comp 411 - Fall 2017

Enumeration of Computable functions

30

Conceptual table of TM behaviors...
 VERTICAL AXIS: Enumeration of TMs.
 HORIZONTAL AXIS: Enumeration of input tapes.
(j ,k) entry = result of TMk[j] -- integer, or * if it never halts.

The Halting Problem: Given j, k: Does TMk Halt with input j?

X1 X1 X0
X1 X0 X1

Turing
Machine
FSMs

Turing Machine Tapes

Every computable
function is in this
table, since everything
that we know how to
compute can be
computed by a TM.

Do there exist
well-specified integer
functions that a TM
can’t compute?

fi(0) fi(1) fi(2) ... fi(j) ...

f0 37 23 *

f1 42 * 666

...

fk fk(j)

...

11/1/2017 Comp 411 - Fall 2017

The Halting Problem

31

The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0
Can a Turing machine compute this function?

k

j
TH

1 iff Tk[j] HALTS
0 otherwise

Suppose, for a moment, TH exists:

Then we can build a TNasty:

TH
?

LOOP

HALT

1

0
k

TNasty[k] LOOP if Tk[k] = 1 (halts)
HALT if Tk[k] = 0 (loops)

If TH is
computable
then so is

TNasty
We only run TH on a
subset of inputs,
those on the
diagonal of the
table given on the
previous slide

11/1/2017 Comp 411 - Fall 2017

What does T
Nasty

[Nasty] do?

Answer:
TNasty[Nasty] loops if TNasty[Nasty] halts
TNasty[Nasty] halts if TNasty[Nasty] loops

That’s a contradiction.
Thus, TH is not computable by a Turing Machine!

Net Result: There are some integer functions that Turing Machines
simply cannot answer. Since, we know of no better model of
computation than a Turing machine, this implies that there are some
well-specified problems that defy computation.

32

2

11/1/2017 Comp 411 - Fall 2017

Limits of Turing Machines

A Turing machine is formal abstraction that addresses
• Fundamental Limits of Computability –

What is means to compute.
The existence of uncomputable functions.

• We know of no machine more powerful than a Turing machine
 in terms of the functions that it can compute.

But they ignore
• Practical coding of programs
• Performance
• Implementability
• Programmability

... these latter issues are the primary focus of contemporary
 computer science (Remainder of Comp 411)

33

11/1/2017 Comp 411 - Fall 2017

Computability vs. Programmability

Recall Church’s thesis:

 “Any discrete function computable by
ANY realizable machine is computable
by some Turing Machine”
We’ve defined what it means to COMPUTE
(whatever a TM can compute), but, a
Turing machine is nothing more that an FSM
that receives inputs from, and outputs
onto, an infinite tape.

So far, we’ve been designing a new FSM
for each new Turing machine that we
encounter.

Wouldn’t it be nice if we could design a
more general-purpose Turing machine?

34

FSM

0 1 1 00 0 1 0 0

Sorting

FSM

0 1 1 00 0 1 0 0

Multiplication

FSM

0 1 1 00 0 1 0 0

Factorization

FSM

0 1 1 00 0 1 0 0

Is it prime?

11/1/2017 Comp 411 - Fall 2017

Programs as Data

35

What if we encoded the description of the FSM on our tape, and
then wrote a general purpose FSM to read the tape and EMULATE
the behavior of the encoded machine? We could just store the
state-transition table for our TM on the tape and then design a new
TM that makes reference to it as often as it likes. It seems
possible that such a machine could be built.

M

x
UTM[x]

"It is possible to invent a single machine
which can be used to compute any
computable sequence. If this machine U is
supplied with a tape on the beginning of
which is written the S.D ["standard
description" of an action table] of some
computing machine M, then U will compute
the same sequence as M.”
- Turing 1936 (Proc of the London
Mathematical Society, Ser. 2, Vol. 42)

3

11/1/2017 Comp 411 - Fall 2017

Fundamental Result: Universality

36

Define "Universal Function“: U(x,y) = TX(y) for every x, y …
Surprise! U(x,y) IS COMPUTABLE,
hence U(x,y) = TU(<x,y>) for some U.

Universal Turing Machine (UTM):

TM = "program"
tape = "data"

"interpreter"
 PARADIGM for General-Purpose Computer!

TU [<y, z>] = TY[z]

INFINITELY many UTMs ...
 Any one of them can
 evaluate any computable
 function by simulating/
 emulating/interpreting
 the actions of Turing
 machine given to it
 as an input.

UNIVERSALITY:
 Basic requirement
 for a general purpose
 computer

11/1/2017 Comp 411 - Fall 2017

Demonstrating Universality

37

Suppose you've designed Turing Machine TK and want to show that its universal.

APPROACH:
1. Find some known universal machine, say TU.
2. Devise a program, P, to simulate TU on TK:
TK[<P,x>] = TU[x] for all x.
3. Since TU[<y,z>] = TY[z], it follows that, for all y and z.

CONCLUSION: Armed with program P, machine TK can mimic the
behavior of an arbitrary machine TY operating on an arbitrary input
tape z.

HENCE TK can compute any function that can be computed by any
Turing Machine.

TK [<P,<y,z>>] = TU[<y,z>] =
TY[z]

Turing
Complete

11/1/2017 Comp 411 - Fall 2017

Next Time

Enough theory already, let’s build something!

38

