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Designing Sequential Logic

1

Sequential logic is used when the solution to some design 
problem involves a sequence of steps:

How to open digital combination lock w/ 3 buttons (“start”, “0” and “1”):

      Step 1:  press “start” button
    Step 2: press “0” button
    Step 3: press “1” button
    Step 4: press “1” button
    Step 5: press “0” button
     

Information 
remembered between 
steps is called state.  
Might be just what 
step we’re on, or 
might include results 
from earlier steps 
we’ll need to complete 
a later step.
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Implementing a “State Machine”

2

Current State “start” “1” “0”     Next State  unlock
    --- 1 ---  ---      start        0
start 0 0 1 digit1 0
start 0 1 0 error 0

error 0 --- --- error 0

start 0 0 0 start 0
digit1 0 1 0 digit2 0
digit1 0 0 1 error 0
digit1 0 0 0 digit1 0
digit2 0 1 0 digit3 0

digit3 0 0 1 unlock 0
…
…
unlock 0 1 0 error 1
unlock 0 0 1 error 1
unlock 0 0 0 unlock 1

6 different states → encode using 3 bits

000
000

001

010

011

100
100

101

001

000
001
101

101

011

100

101
101

101

010
000 000

001 001

100 100

This is starting 
to look  like a 
PROGRAM

This flavor of 
“truth-table” is 

called a 
“state-transition 

table”
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Now, We Do It With Hardware!

3

ROM
64x4

unlock

Next stateCurrent state

“1” button

“0” button

“start” button

Trigger update periodically (“clock”)

33

6 inputs →26 locations
each location supplies 4 bits

Q D
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Abstraction du jour:

A Finite State Machine

4

A Finite State Machine has:

Clocked 
FSM

m n

● k States  S1, S2, … Sk   (one is the “initial” state)

● m inputs  I1, I2, … Im
● n outputs O1, O2, … On

● Transition Rules, S’(Si,I1, I2, … Im)
for each state and input combination

● Output Rules, O(Si) for each state
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Discrete State, Discrete Time

5

ROM

NEXTSTATE

inputs outputs

ss
s state bits → 2s possible states

Two design choices:
  (1) outputs *only* depend on state
  (2) outputs depend on inputs + state

    (Moore)
        (Mealy)

While a ROM is shown here 
in the feedback path any 
form of combinational logic 
can be used to construct a 
state machine. 

Clock

STAT
E
NEXT

Clock 
Period 

1

Clock 
Period 

2

Clock 
Period 

3

Clock 
Period 

4

Clock 
Period 

5
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State Transition Diagrams
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S
U=0

D1
U=0

D2
U=0

D3
U=0

U
U=1

E
U=0

0 1 1 0

1 0,1
0 0 1

0,1,

S S S S

S

S, A state transition diagram is 
an abstract “graph” 
representation of a “state 
transition table”, where each 
state is represented as a 
node and each transition is 
represented as a as an arc. 
It represents the machine’s 
behavior not its 
implementation!

XXX
U=0

NAME
of 

state

OUTPUT when
in this state

(Moore)

0
INPUT

or INPUTs
causing

transition

Heavy circle means
INITIAL state

= no buttons 
pressed
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Example State Diagrams
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Arcs leaving a state must be:
  (1) mutually exclusive

can only have one choice for any given input value
  (2) collectively exhaustive

every state must specify what happens for each possible 
input combination.  “Nothing happens” means arc back to itself.

MOORE Machine:
Outputs on States

MEALY Machine:
Outputs on Transitions

S0 S1
0

0

S20

1

11 0 0
1

S0 S1
0/0

0/0

S20/1

1/1

1/0
1/0
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Next Time

Counting state machines

8
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FSMs and Turing Machines

● Ways we know to compute
○ Truth-tables  = combinational logic
○ State-transition tables = sequential logic

● Enumerating FSMs
● An even more powerful model:

a “Turing Machine”
● What does it mean to compute?
● What can’t be computed
● Universal TMs = programmable TM

9

Alan Turing
(1912-1954)

Kleene 
(1909-1994)

Post
(1897-1954)

Church (1903-1995)
Turing’s PhD Advisor
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Let’s play State Machine

10

Let’s emulate the behavior specified by the state machine
shown below when processing the following string from 
LSB to MSB.

3910 = 01001112

S0 S1
0

0

S20

1

11 0 0
1

           State  Input   Next  Output
T=0 S0       1   S1 0
T=1 S1       1   S0 1
T=2 S0       1   S1 0
T=3 S1       0   S2 0
T=4 S2       0   S1 0
T=5 S1       1   S0 1
T=6 S0       0   S0 1

It looks to me like this
machine outputs a 1
whenever the bit sequence
that it has seen thus far
is a multiple of 3.
(Wow, and FSM can 
divide by 3!)

input order
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FSM Party Games
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ROM
kk

1.  What can you say about 
the number of states?

2.  Same question:
FSM1

m-states
FSM2 
n-states

x y z

3. Here's  an  FSM.  
Can you discover its rules?

States ≤ 2k

States ≤ m × n
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What’s My Transition Diagram?

12

vs.

1
1

0
1 1

0

1

0

1

00
"1-1-1-1" =Surprise!

• If you know NOTHING about the FSM,  you’re never sure!

• If you have a BOUND on the number of states, you can discover 
its behavior:

                K-state FSM: Every (reachable) state 
              can be reached in < 2i x k steps.

BUT ... states may be equivalent!

0
0

10=OFF, 1=ON?
1
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FSM Equivalence

13

10
1

0
1 0

1 1

0

1

0

1

00
vs
.

ARE  THEY  DIFFERENT?
NOT in any practical sense! They are EXTERNALLY 
INDISTINGUISHABLE, hence interchangeable.

FSMs  are EQUIVALENT  iff every input
sequence yields identical output sequences.

ENGINEERING  GOAL:
• HAVE an FSM which  works...
• WANT  simplest  (ergo cheapest) equivalent  FSM.
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Housekeeping issues…

14

ROM
or 

gates
NEXTSTATE

inputs outputs

ss

1. Initialization?  Clear the memory?

2. Unused state encodings?
    - wastes ROM (use gates)
    - meaning?

3. Synchronizing input changes with
     state update?

4. Choosing encodings for each state?That symbol is
starting to
register
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2-Types of Processing Elements

15

Combinational Logic:
      Table look-up, ROM

Finite State Machines:
      ROM with State Memory

Thus far, we know of nothing 
more powerful than an FSM

Addr   
Data

i o

Addr   
Data

i o

s

Fundamentally,
everything
that we’ve

learned so far
can be done
with a ROM

and registers

Recall that there are precisely 

22,  i-input combinational functions.
A single ROM can store ‘o’ of them.

i
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FSMs as Programmable Machines
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ROM-based FSM sketch:
Given i, s, and o, we need a ROM 
organized as:

   2i+s words x (o+s) bits

So how many possible
   i-input,
   o-output,
   FSMs with
   s-state bits
   exist?

i

s

0...01
0...00 0...00 10110 011

o

2i+s

sN+1 os
N

i
input
s

outputs

2 (o+s)2i+s

(some may be
equivalent)

An FSM’s behavior is completely 
determined by its ROM contents.

The number of “bits” 
in the ROM

All possible 
settings of the 
ROM’s contents  

to: 1 or 0

Recall how we were able to “enumerate” 
or “name” every 2-input gate? 

Can we do the same for FSMs?

How many state machines are there with 
1-input, 1-output, and 1 state bit?

2(1+1)4 = 28 = 256
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FSM Enumeration

17

GOAL: List all possible FSMs in 
some canonical order.
  • INFINITE list, but
  • Every FSM has an entry in
    and an associated index.

0...01
0...00 0...00 10110 011

sN+1osNi
input
s

outputs

28

FSMs

264

Every possible FSM can be associated with a unique number. 
This requires a few wasteful simplifications. First, given an 
i-input, s-state-bit, and o-output FSM, we’ll replace it with its 
equivalent n-input, n-state-bit and n-output FSM, where n is the 
greatest of i, s, and o. We can always ignore the extra 
input-bits, and set the extra output bits to 0. This allows us to 
discuss the ith FSM

These are the FSMs with 1 input 
and 1 output and 1 state bit. 
They have 8-bits in their ROM.

18,446,744,073,709,551,872

3.9402 x 10115
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Some FavoRites

18

FSM837      modulo 3 state machine
FSM1077      4-bit counter
FSM1537      Combination lock
FSM89143      Cheap digital watch
FSM22698469884      MIPs processor
FSM23892749274 ARM7 processor
FSM78436378389 Intel I-7 processor (Skylake)
FSM78436378390 Intel I-7 processor (Kaby lake)
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Can FSMs Compute Every Binary Function?

19

Nope! 
There exist many simple problems that cannot be computed by FSMs. 
For instance:

Checking for balanced parentheses
(()(()())) - Okay 
(()())) - No good!

PROBLEM: Requires ARBITRARILY many states, depending on input.   
Must "COUNT" unmatched LEFT parens.

But, an FSM can only keep track of a “bounded” number of events.  
(Bounded by its number of states)

Is there another form of logic that can solve this problem?

A function is specified by a 
deterministic output 
relationship for any given 
series of inputs, starting 
from a known initial state. 
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Unbounded-Space Computation

20

DURING 1920s & 1930s, much of the 
“science” part of computer science 
was being developed (long before 
actual electronic computers 
existed). Many different 
“Models of Computation”

were proposed, and the classes of 
“functions” that each could compute 
were analyzed.

One of these models was the 
“TURING MACHINE”, 

named after Alan Turing (1912-1954).

Alan Turing

S
1

     A Turing Machine is just an FSM which receives its 
inputs and writes outputs onto an “infinite tape”. This 
simple addition overcomes the FSM’s limitation that it can 
only keep track of a “bounded number of events”.

S
2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

0|1|1|0|0|1|1|1|0|1|0|1|1|1|0|1|1|0
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A Turing Machine Example

Turing Machine Specification
  • Infinite tape
  • Discrete symbol positions
  • Finite alphabet – say {0, 1}
  • Control FSM
INPUTS:
    Current symbol on tape
OUTPUTS:

write 0/1
move tape Left or Right

• Initial Starting State {S0}
• Halt State {Halt}

21

A Turing machine, like an FSM, can be 
specified via a state-transition table.  
The following Turing Machine implements 
a unary (base 1) counter.

0|0|0|0|1|1|1|1|0|0 …… 1
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Turing Machine Tapes as Integers

22

Canonical names for bounded tape configurations:

FSM  i

0 1 1 00 0 1 0 0

Look, it’s just FSM i
operating on tape j

b8    b6    b4   b2    b0    b1   b3    b5    b7  

Note: The FSM part of a Turing Machine is just one of the 
FSMs in our enumeration. The tape can also be represented 
as an integer, but this is trickier. It is natural to represent it 
as a binary fraction, with a binary point just to the left of 
the starting position. If the binary number is rational, we can 
alternate bits from each side of the binary point until all 
that is left is zeros, then we have an integer.
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TMs as Integer Functions

23

Turing Machine Ti operating on Tape x,
where x = …b8b7b6b5b4b3b2b1b0

I wonder if a TM can compute
EVERY integer function...

y   =   T [x]i
x:  input tape configuration 
y: output tape when TM halts
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Alternative Models of Computation

24

Turing Machines [Turing]

FSM i

0 1 1 00 0 1 0 0

Turing

Hardware
head

Lambda calculus [Church, Curry, Rosser...]

λx.λy.xxy

(lambda(x)(lambda(y)(x (x y))))

Church (1903-1995)
Turing’s PhD Advisor

Math
head

Theory
head

Production Systems [Post, Markov]

  
$0 → []
$ → [$]
$ → $$
$i[]$j → $i$j

Post
(1897-1954)

Language
head

Recursive Functions [Kleene]

(define (fact n)
      (... (fact (- n 1)) ...)

Kleene (1909-1994)

F(0,x) = x
F(y,0) = y
F(y,x) = x + y + F(y-1,x-1)
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The 1
st
 Computer Industry Shakeout

25

Here’s a TM that
computes SQUARE ROOT!

FSM

0 1 1 00 0 1 0 0
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And the Battles Raged

26

Here’s a Lambda Expression
that does the same thing...

... and here’s one that computes
the nth root for ANY n!

(λ(x) .....)

(λ(x n) .....)
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A Fundamental Result

27

Turing’s amazing proof: Each model is capable of computing 
exactly the same set of integer functions! None is more 
powerful than the others.

Proof Technique: Constructions that
         translate between

 models

BIG IDEA: Computability, independent of
computation scheme chosen

This means that we know of 
no mechanisms (including 
computers) that are more 
“powerful” than a Turing 
Machine, in terms of the 

functions they can compute.

Church's Thesis:
Every discrete function computable

by ANY realizable machine is
computable by some Turing machine.

1
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Computable Functions

28

Representation tricks: to compute fk(x,y) (2 inputs)
<x,y> ≡ integer whose even  bits come from x, 

      and whose odd  bits come from y; whence

f12345(x,y) = x * y
f23456(x) = 1 iff x is prime, else 0

f(x) computable <=> for some k, all x:
              f(x) = TK[x]      fK(x)

fK(x, y)   TK[<x, y>]

The “input” to our computable function will be 
given on the initial tape, and the “output” will be 
the contents of the tape when the TM halts.
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TMs, like programs, can misbehave

29

It is possible that a given Turing Machine may not 
produce a result for a given input tape. And it may 
do so by entering an infinite loop!

Consider the given TM.

It scans a tape looking 
for the first non-zero 
cell to the right.

What does it do when
given a tape that has
no 1’s to its left?

We say this TM does not 
halt for that input!

0|0|0|0|0|0|0|1|0|0 … tape256 = …

… tape8 = … 0|1|0|0|0|0|0|0|0|0
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Enumeration of Computable functions

30

Conceptual table of TM behaviors... 
   VERTICAL AXIS: Enumeration of TMs.
   HORIZONTAL AXIS: Enumeration of input tapes.
(j ,k) entry = result of TMk[j] -- integer, or * if it never halts.

The Halting Problem: Given j, k: Does TMk Halt with input j?

X1  X1  X0 
X1  X0  X1

Turing
Machine
FSMs

Turing Machine Tapes

Every computable 
function is in this 
table, since everything 
that we know how to 
compute can be 
computed by a TM.

Do there exist 
well-specified integer 
functions that a TM 
can’t compute?

fi(0) fi(1) fi(2) ... fi(j) ...

f0 37 23 * ... ...

f1 42 * 666 ... ...

... ... ... ... ... ...

fk ... ... ... ... fk(j)

...
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The Halting Problem

31

The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0
Can a Turing machine compute this function?

k

j
TH

1 iff Tk[j] HALTS
0 otherwise

Suppose, for a moment, TH  exists:

Then we can build a TNasty:

TH
?

LOOP

HALT

1

0
k

TNasty[k] LOOP if Tk[k] = 1 (halts)
HALT if Tk[k] = 0 (loops)

If TH is
computable
then so is 

TNasty
We only run TH on a 
subset of inputs, 
those on the 
diagonal of the  
table given on the 
previous slide
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What does T
Nasty 

[Nasty] do?

Answer: 
TNasty[Nasty] loops if TNasty[Nasty] halts
TNasty[Nasty] halts if TNasty[Nasty] loops

That’s a contradiction. 
Thus, TH is not computable by a Turing Machine!

Net Result: There are some integer functions that Turing Machines 
simply cannot answer. Since, we know of no better model of 
computation than a Turing machine, this implies that there are some 
well-specified problems that defy computation.

32

2
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Limits of Turing Machines

A Turing machine is formal abstraction that addresses
•   Fundamental Limits of Computability –

What is means to compute.
The existence of uncomputable functions.

•   We know of no machine more powerful than a Turing machine
        in terms of the functions that it can compute. 

But they ignore
• Practical coding of programs
• Performance
• Implementability
• Programmability

... these latter issues are the primary focus of contemporary
  computer science  (Remainder of Comp 411)

33
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Computability vs. Programmability

Recall Church’s thesis:

 “Any discrete function computable by 
ANY realizable machine is computable 
by some Turing Machine”
We’ve defined what it means to COMPUTE 
(whatever a TM can compute), but, a 
Turing machine is nothing more that an FSM 
that receives inputs from, and outputs 
onto, an infinite tape.

So far, we’ve been designing a new FSM 
for each new Turing machine that we 
encounter.

Wouldn’t it be nice if we could design a 
more general-purpose Turing machine?

34

FSM

0 1 1 00 0 1 0 0

Sorting

FSM

0 1 1 00 0 1 0 0

Multiplication

FSM

0 1 1 00 0 1 0 0

Factorization

FSM

0 1 1 00 0 1 0 0

Is it prime?



11/1/2017 Comp 411 - Fall 2017 

Programs as Data

35

What if we encoded the description of the FSM on our tape, and
then wrote a general purpose FSM to read the tape and EMULATE
the behavior of the encoded machine? We could just store the 
state-transition table for our TM on the tape and then design a new 
TM that makes reference to it as often as it likes. It seems 
possible that such a machine could be built.

M

x
UTM[x]

"It is possible to invent a single machine 
which can be used to compute any 
computable sequence. If this machine U is 
supplied with a tape on the beginning of 
which is written the S.D ["standard 
description" of an action table] of some 
computing machine M, then U will compute 
the same sequence as M.”
- Turing 1936 (Proc of the London 
Mathematical Society, Ser. 2, Vol. 42)

3
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Fundamental Result: Universality

36

Define "Universal Function“: U(x,y) = TX(y) for every x, y …
Surprise! U(x,y) IS COMPUTABLE,
hence U(x,y) = TU(<x,y>) for some U.

Universal Turing Machine (UTM):

TM = "program"
tape = "data"

"interpreter"
   PARADIGM  for General-Purpose Computer!

TU [<y,  z>] = TY[z]

INFINITELY many UTMs ... 
   Any one of them can
   evaluate any computable
   function by simulating/
   emulating/interpreting
   the actions of Turing
   machine given to it
   as an input.

UNIVERSALITY:
   Basic requirement
   for a general purpose
   computer
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Demonstrating Universality

37

Suppose you've designed Turing Machine TK and want to show that its universal.

APPROACH:
1. Find some known universal machine, say TU.
2. Devise a program, P, to simulate TU on TK:
TK[<P,x>] = TU[x] for all x.
3. Since TU[<y,z>] = TY[z], it follows that, for all y and z.

CONCLUSION:  Armed with program P, machine TK can mimic the 
behavior of an arbitrary machine TY operating on an arbitrary input 
tape z.

HENCE TK can compute any function that can be computed by any 
Turing Machine.

TK [<P,<y,z>>]  =  TU[<y,z>]  =  
TY[z]

Turing 
Complete
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Next Time

Enough theory already, let’s build something!

38


