
10/30/2017 Comp 411 - Fall 2017

Latches: Digital storage Elements

1

G

D Q

Positive latch

Latches are a digital “memory”, they “remember” one-bit while
their “gate”, G, is closed. When open, their output follows the input
D. The last value of D is remembered when the gate is closed.

Negative latch

G

D Q

Q

G

D

1

0
Q

G

D

0

1

10/30/2017 Comp 411 - Fall 2017 2

It is difficult to control
precisely how long a
gate should be opened
to allow exactly one
data value to get
through.

One gate is not enough

10/30/2017 Comp 411 - Fall 2017 3

The Solution:
 With two gates, where
 only one is open at any
 time, we can allow allow
 only the desired data
 through

Two gates provide precise control

10/30/2017 Comp 411 - Fall 2017

Edge-triggered Flip Flop
logical “escapement”

4

G

D Q

G

D Q D QD

CLK

Q D

CLK

Q
master slave

Observations:
● only one latch’s gate is open at any time
● master closed when slave is open (CLK is high)
● slave closed when master is open (CLK is low)
● no combinational path through flip flop
● Q only changes shortly after 0→1 transition

of CLK, so a “flip flop” appears to be “triggered” by
rising edge of CLK

Transitions mark
instants, not

intervals

10/30/2017 Comp 411 - Fall 2017

Flip-flop Timing

5

G

D Q

G

D Q D QD

CLK

Q D

CLK

Q
maste

r
slave

D
CLK

Q

master closed
slave open

slave closed
master open

The output of a
flip-flop only
changes after
the rising edge
of its clock

10/30/2017 Comp 411 - Fall 2017

Two Issues

6

G

D Q

G

D QD Q
master slave

CLK

• Must allow time for the input’s value to propagate to the
Master’s output while CLK is LOW.

• This is called “SET-UP” time

• Must keep the input stable, just after CLK transitions to HIGH.
This is insurance in case the SLAVE’s gate opens just before the
MASTER’s gate closes.

• This is called “HOLD-TIME”
• Can be zero (or even negative!)

• Assuring “set-up” and “hold” times is what limits a computer’s
performance

(How long a D input must
valid before the clock rises)

(How long a D input must “remain”
 valid after the clock rises)

10/30/2017 Comp 411 - Fall 2017

Flip-Flop Timing Specs

7

CLK

D

Q
D QD

CLK

Q
<tPD

tPD: maximum propagation delay, CLK →Q

>tSETUP

tSETUP: setup time
 guarantee that D has propagated through feedback path before master closes

>tHOLD

tHOLD: hold time
 guarantee master is closed and data is stable before allowing D to change

10/30/2017 Comp 411 - Fall 2017

Summary

● Regular Arrays can be used to implement arbitrary logic
functions

● ROMs decode every input combination (fixed-AND array)
and compute the output for it (customized-OR array)

● Memories
○ ROMs are HARDWIRED memories
○ RAMs include storage elements at each WORD-line and BIT-line

intersection
■ dynamic memory: compact, only reliable short-term
■ static memory: controlled use of positive feedback

● Level-sensitive D-latches for static storage
● Dynamic discipline (setup and hold times)

8

10/30/2017 Comp 411 - Fall 2017

Synchronous Logic

1) Sequential Logic
2) Synchronous Design
3) Synchronous Timing Analysis
4) Single Clock Design
5) Finite State Machines
6) Mealy and Moore
7) State Transition Diagrams

14

These must be the
“slings and arrows of
outrageous fortune”

10/30/2017 Comp 411 - Fall 2017

Road Traveled So Far…

15

FETs & voltages

Logic gates

Combinational contract:
 • Voltage-based “bits”
 • 1-bit per wire
 • Generate quality outputs,
 tolerate inferior inputs
 • Combinational contract
 • Complete in/out/timing
 spec

Our motto: Sweat the details once, and then put a box around it!

Combinational
logic circuits

Acyclic connections
Composable blocks
Design:
 • truth tables
 • sum-of-products
 • muxes
 • ROMs

ALU,
Mult,
Etc.

Sequential
Logic

Storage & state
Dynamic discipline
Finite-state
machines
Throughput &
latency
Pipelining

10/30/2017 Comp 411 - Fall 2017

Something We Can’t Build

What if you were given the following system design specification?

16

When the button is pushed:
1) Turn on the light if

it is off
2) Turn off the light if

it is on

The light should change
state within a second
of the button press

button light

What makes this System so different
from those we’ve discussed before?

1. “State” – i.e. the circuit has memory
2. The output was changed by a input

“event” (pushing a button) rather
than an input “value”

10/30/2017 Comp 411 - Fall 2017

“Sequential” = Stateful

17

Plan: Build a Sequential Circuit with stored digital STATE -
● MEMORY stores CURRENT state
● Combinational Logic computes

○ the NEXT state (Based on inputs & current state)
○ the OUTPUTs (Based on inputs and/or current state)
○ State changes on LOAD control input

Combinational
Logic

Current
State

New
State

Inputs Outputs

Memory
Device
LOAD

Didn’t we develop
some memory
devices last time?

10/30/2017 Comp 411 - Fall 2017

“Synchronous” Single-Clock Logic

18

CLK

t1

t1 = tCD,reg1 + tCD,L ≥ tHOLD,reg2

LD Q D Q

CLK

reg1 reg2

Questions for register-based designs:
• How much time for useful work

(i.e. for combinational logic delay)?

• Does it help to guarantee a
minimum tCD? How ‘bout
designing registers so that

tCD,reg ≥ tHOLD,reg?

• What happens if CLK signal
doesn’t arrive at the two
registers at exactly the
same time (a phenomenon
known as “clock skew”)?

t2

t2 = tPD,reg1 + tPD,L ≤ tCLK - tSETUP,reg2

Minimum Clock Period : tCLK ≥ tPD,reg1 + tPD,L + tSETUP,reg2

10/30/2017 Comp 411 - Fall 2017

Example: Synchronous Timing

19

ROM
64x4

unlock

Next stateCurrent state

“1” button
“0” button

“start” button

33
DQ

tCD = ?
tPD = 5ns

tCD = 1ns
tPD = 3ns
tS = 2ns
tH = 2ns

Questions:
1. tCD for the ROM?

2. Min. clock period?

3. Constraints on inputs?

clock

tCD,REG + tCD,ROM > tH,REG
1 ns + tCD,ROM > 2 nS
tCD,ROM > 1 nS

tCLK > tPD,REG + tPD,ROM + tS,REG
tCLK > 3 ns + 5 ns + 2 nS
tCLK > 10 nS

“start” , “0”, and “1” must be valid
 tPD,ROM + tS,REG = 5 + 2 = 7 ns
before the clock and held
 tH,REG – tCD,ROM = 2 – 1 = 1 ns
after it.

Just how do I
assure that?

10/30/2017 Comp 411 - Fall 2017

Synchronous Single-Clock Design

20

However, Synchronous = A recipe for robust sequential circuits:

• No combinational cycles
 (other than those already inside the registers)

• Only cares about values of
 combinational circuits just
 before rising edge of clock
• Clock period greater than
 every combinational delay
• Changes state after all logic
 transitions have stopped!

Sequential ≠ Synchronous

10/30/2017 Comp 411 - Fall 2017

Designing Sequential Logic

21

Sequential logic is used when the solution to some design
problem involves a sequence of steps:

How to open digital combination lock w/ 3 buttons (“start”, “0” and “1”):

 Step 1: press “start” button
 Step 2: press “0” button
 Step 3: press “1” button
 Step 4: press “1” button
 Step 5: press “0” button

Information
remembered between
steps is called state.
Might be just what
step we’re on, or
might include results
from earlier steps
we’ll need to complete
a later step.

10/30/2017 Comp 411 - Fall 2017

Implementing a “State Machine”

22

Current State “start” “1” “0” Next State unlock
 --- 1 --- --- start 0
start 0 0 1 digit1 0
start 0 1 0 error 0

error 0 --- --- error 0

start 0 0 0 start 0
digit1 0 1 0 digit2 0
digit1 0 0 1 error 0
digit1 0 0 0 digit1 0
digit2 0 1 0 digit3 0

digit3 0 0 1 unlock 0
…
…
unlock 0 1 0 error 1
unlock 0 0 1 error 1
unlock 0 0 0 unlock 1

6 different states → encode using 3 bits

000
000

001

010

011

100
100

101

001

000
001
101

101

011

100

101
101

101

010
000 000

001 001

100 100

This is starting
to look like a
PROGRAM

This flavor of
“truth-table” is

called a
“state-transition

table”

10/30/2017 Comp 411 - Fall 2017

Now, We Do It With Hardware!

23

ROM
64x4

unlock

Next stateCurrent state

“1” button

“0” button

“start” button

Trigger update periodically (“clock”)

33

6 inputs →26 locations
each location supplies 4 bits

Q D

10/30/2017 Comp 411 - Fall 2017

Abstraction du jour:

A Finite State Machine

24

A Finite State Machine has:

Clocked
FSM

m n

● k States S1, S2, … Sk (one is the “initial” state)

● m inputs I1, I2, … Im
● n outputs O1, O2, … On

● Transition Rules, S’(Si,I1, I2, … Im)
for each state and input combination

● Output Rules, O(Si) for each state

10/30/2017 Comp 411 - Fall 2017

Discrete State, Discrete Time

25

ROM

NEXTSTATE

inputs outputs

ss
s state bits → 2s possible states

Two design choices:
 (1) outputs *only* depend on state
 (2) outputs depend on inputs + state

 (Moore)
 (Mealy)

While a ROM is shown here
in the feedback path any
form of combinational logic
can be used to construct a
state machine.

Clock

STAT
E
NEXT

Clock
Period

1

Clock
Period

2

Clock
Period

3

Clock
Period

4

Clock
Period

5

10/30/2017 Comp 411 - Fall 2017

State Transition Diagrams

26

S
U=0

D1
U=0

D2
U=0

D3
U=0

U
U=1

E
U=0

0 1 1 0

1 0,1
0 0 1

0,1,

S S S S

S

S, A state transition diagram is
an abstract “graph”
representation of a “state
transition table”, where each
state is represented as a
node and each transition is
represented as a as an arc.
It represents the machine’s
behavior not its
implementation!

XXX
U=0

NAME
of

state

OUTPUT when
in this state

(Moore)

0
INPUT

or INPUTs
causing

transition

Heavy circle means
INITIAL state

= no buttons
pressed

10/30/2017 Comp 411 - Fall 2017

Example State Diagrams

27

Arcs leaving a state must be:
 (1) mutually exclusive

can only have one choice for any given input value
 (2) collectively exhaustive

every state must specify what happens for each possible
input combination. “Nothing happens” means arc back to itself.

MOORE Machine:
Outputs on States

MEALY Machine:
Outputs on Transitions

S0 S1
0

0

S20

1

11 0 0
1

S0 S1
0/0

0/0

S20/1

1/1

1/0
1/0

10/30/2017 Comp 411 - Fall 2017

Next Time

Counting state machines

28

