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Binary Multiplication

1

01011
+00101
10000× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

× 0 1

0 0 0

1 0 1

You’ve got to be 
kidding… It can’t be 
that easy

The key to multiplication was 
memorizing a digit-by-digit table… 
Everything else was just adding
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Digit by digit = bit by bit

2

A0A1A2A3 B0B1B2B3

A0B0A1B0A2B0A3B0
A0B1A1B1A2B1A3B1

A0B2A1B2A2B2A3B2

x

A0B3A1B3A2B3A3B3
+

AjBi is a 
“partial product”

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: 
forming partial 
products 
(just an AND 
gate since BI is 
either 0 or 1)

Hard part: 
adding M, N-bit 
partial products

101
000
10X

The “Binary” 
Multiplication 

Table

Hey, that 
looks like an 

AND gate

Binary multiplication is implemented using 
the same basic longhand algorithm that 
you learned in grade school.
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Multiplying in Assembly

One can use this “Shift and Add” approach to write a 
multiply function in assembly language:

3

; multiplies r0 and r1
mult:   mov     r3,#0 ; zero product
part:   tst     r1,#1 ; check if least significant bit=1
        addne   r3,r3,r0 ; add multiplicand to product
        mov     r0,r0,lsl #1 ; multiplicand *= 2
        movs    r1,r1,lsr #1 ; multiplier /= 2
        bne     part ; continue while multiplier is not 0
        mov     r0,r3 ; copy product to return value
        bx      lr

r1: r0:
Multiplier

Hum, maybe 
we could do 
something 

more clever.

0000 0000 0100 10000000 0000 0010 1010

Multiplicand

    0000 0000 0010 1010        0000 0000 0000 0000
0000 0000 0001 0101        0000 0000 1001 000_ 
0000 0000 0000 1010        0000 0000 0000 00__
0000 0000 0000 0101        0000 0010 0100 0___
0000 0000 0000 0010        0000 0000 0000 ____
0000 0000 0000 0001        0000 1001 000_ ____

 0000 1011 1101 0000



10/23/2017 Comp 411 - Fall 2017 

Multiplier Unit-Block

We introduce a new abstraction to 
aid in the construction of multipliers
called the “Unsigned Multiplier Unit-block”
We did a similar thing last lecture
when we converted our adder to an
add/subtract unit.
Ak are bits of the Multiplicand and 
Bi are bits of the Multiplier.
The Pi,k inputs and outputs represent
“partial products” which are partial
results from adding together shifted
instances of the Multiplicand. 
The initial P0,k is zero.

4

  A      B 
CO      CI
      S

FA

A
i

B
i

Subtract
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i

Ci-1

Si

Add/Subtract 
Unit Block

  A      B
CO      CI
       S

FA

pi-1,k

Ak B
i

Ck Ck-1

pi,k

Unsigned
Multiply

Unit Block
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Simple Combinational Multiplier

5

tPD = 10 * tPD

not 16

NB: this circuit only 
works for 
nonnegative operands

Components
N * HA

N(N-1) * FA

HA
               A
Co              
B
         S

HA
               A
Co              
B
         S

HA
               A
Co              
B
         S

HA
               A
Co              
B
         S

tPD = (2*(N-1) + N) * tPD

To determine the 
timing specification of 
a composite 
combinational circuit 
we find the 
worst-case path for 
every output to any 
input. 

Is this faster 
than our 
assembly code?
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“Carry-Save” Multiplier

6

tPD = 8 * tPD

Components
N * HA
N2 * FA

Observation: Rather than 
propagating the carries 
to the next adder in each 
row, they can instead be 
forwarded to the next 
column of the following 
row

This small 
performance 
improvement  
hardly seems 
worth the 
effort, 
however, this 
design is 
easier to 
“pipeline”. 

These 
Adders can 
be 
removed, 
and the 
AND gate 
outputs 
tied 
directly to 
the Carry 
inputs of 
the next 
stage.

tPD = (N+N) * 
tPD
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Higher-Radix Multiplication

7

BK+1,K*A = 0*A
              = 1*A
              = 2*A   Just a shift
              = 3*A   Requires adding

       AN-1   AN-2   …   A3  A2   A1  A0
       BM-1   BM-2   …   B3  B2   B1  B0x

...

2M/2

Idea: If we could use, say, 2 bits of the multiplier in generating each 
partial product we would halve the number of rows and halve the 
latency of the multiplier!

BK+1,K*A = 0*A ⇨ 0
              = 1*A ⇨ A
              = 2*A ⇨ 2A  or  4A – 2A
              = 3*A ⇨ 4A – A

Booth’s insight: rewrite 2*A 
and 3*A cases, leave 4A for 
next partial product to do! 
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Booth Recoding of Multiplier
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B2K+1

0
0
0
0
1
1
1
1

B2K

0
0
1
1
0
0
1
1

B2K-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed to add 
4*A.  Since this stage is shifted by 2 bits with respect 
to the previous stage, adding 4*A in the previous stage 
is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair

An encoding where 
each bit has the 
following weights:

W(B2K+1) = -2 * 22K

W(B2K) = 1 * 22K

W(B2K-1) = 1 * 22K

-89 = 1 0 1 0 0 1 1 1 .0

= -1 * 20        (-1)
+ 2 * 22         ( 8)
+ (-2) * 24   (-32)
+ (-1) * 26   (-64)

Hey, isn’t 
that a 

negative 
number?

-89

Yep! Booth recoding works 
for 2-Complement 
integers, now we can build 
a signed multiplier.
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Booth Multiplier unit block

9

Logic surrounding each basic adder:

 - Control lines (x2, Sub,  Zero) 
   Are shared across each row
 - Must handle the “+1” when Sub is 1
   (extra half adders in a carry-save 
    array)

NOTE:
 - Booth recoding 
   can be used to
   implement signed 
   multiplications

  A      B
CO       CI
       S

FA

0     1 x2
Sub

Zero

Ai   Ai-1

Signed
Multiply

Unit Block

pi,k

pi,k-1B2K+1 B2K B2K-1  x2 Sub Zero

0      0     0      X   X    1
0      0     1      0    0    0
0      1     0      0    0    0
0      1     1      1    0    0
1      0     0      1    1    0
1      0     1      0    1    0
1      1     0      0    1    0
1      1     1      X    X   1
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Bigger Multipliers

10

• Using the approaches described we can construct multipliers 
of arbitrary sizes, by considering every adder at the “bit” level

• We can also, build bigger multipliers using smaller ones

• Considering this problem at a higher-level leads to more 
“non-obvious” optimizations

×

A
      
4

B
      
4

   4
PH

I

   4
PL

O
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Can We Multiply With Less?

11

• How many operations are needed to 
multiply 2, 2-digit numbers?

• 4 multipliers
4 Adders

• This technique generalizes
– You can build an 8-bit multiplier using

4 4-bit multipliers and 4 8-bit adders
– O(N2 + N) = O(N2)

           AB
     x CD
       DB
      DA
      CB
     CA
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O(N
2
) multiplier logic

The functional blocks look like

12

           AB
     x CD
       DB
      DA
      CB
     CA

MultMultMultMult

B  C              A               D                B

AddAdd

AddAddHA

Product bits
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A Trick

● The two middle partial products can be computed using a single 
multiplier and other partial products

● DA + CB = (C + D)(A + B) – (CA + DB)
● 3 multipliers

8 adders
● This can be applied recursively

(i.e. applied within each partial product)
● Leads to O(N1.58) adders
● This trick is becoming more popular 

as N grows. However, it is less regular, 
and the overhead of the extra adders 
is high for small N

13

             AB
x   CD
    DB
   DA
   CB
  CA
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Let’s Try it By Hand

1) Choose 2, 2 digit numbers to multiply:    ab × cd

2) Multiply digits: p1 = a x c,  p2 = b x d, p3 = (c + d)(a + b)

3) Compute partial subtracted sum, SS = p3 - (p1 + p2)

4) Add as follows: p = 100 x p1 + 10 x SS + p2

14

42 x 37 = ?

42 x 37

p1 = 4 x 3 = 12, p2 = 2*7 = 14, p3 = (4+2)x(3+7) = 60

SS = 60 - (12 + 14) = 34

P = 1200 + 340 + 14 = 1554 = 42 x 37



10/23/2017 Comp 411 - Fall 2017 

An O(N
1.58

) Multiplier

The functional blocks would look like:

15

     AB
x  CD
   DB
  SS
 CA

Where 
    SS = (C+D)(A+B) 
          – (CA+DB)

Mult

Mult

Mult

C A                              D B 

AddAdd

Add Add

HA

Product bits

Add Add

Add Add

SS

Note: Adders with 
a bubble on one of 
their inputs 
becomes a 
subtractor in this 
notation.
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Next time

● We dive into floating-point arithmetic 

16


