
10/23/2017 Comp 411 - Fall 2017

Binary Multiplication

1

01011
+00101
10000× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

× 0 1

0 0 0

1 0 1

You’ve got to be
kidding… It can’t be
that easy

The key to multiplication was
memorizing a digit-by-digit table…
Everything else was just adding

10/23/2017 Comp 411 - Fall 2017

Digit by digit = bit by bit

2

A0A1A2A3 B0B1B2B3

A0B0A1B0A2B0A3B0
A0B1A1B1A2B1A3B1

A0B2A1B2A2B2A3B2

x

A0B3A1B3A2B3A3B3
+

AjBi is a
“partial product”

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part:
forming partial
products
(just an AND
gate since BI is
either 0 or 1)

Hard part:
adding M, N-bit
partial products

101
000
10X

The “Binary”
Multiplication

Table

Hey, that
looks like an

AND gate

Binary multiplication is implemented using
the same basic longhand algorithm that
you learned in grade school.

10/23/2017 Comp 411 - Fall 2017

Multiplying in Assembly

One can use this “Shift and Add” approach to write a
multiply function in assembly language:

3

; multiplies r0 and r1
mult: mov r3,#0 ; zero product
part: tst r1,#1 ; check if least significant bit=1
 addne r3,r3,r0 ; add multiplicand to product
 mov r0,r0,lsl #1 ; multiplicand *= 2
 movs r1,r1,lsr #1 ; multiplier /= 2
 bne part ; continue while multiplier is not 0
 mov r0,r3 ; copy product to return value
 bx lr

r1: r0:
Multiplier

Hum, maybe
we could do
something

more clever.

0000 0000 0100 10000000 0000 0010 1010

Multiplicand

 0000 0000 0010 1010 0000 0000 0000 0000
0000 0000 0001 0101 0000 0000 1001 000_
0000 0000 0000 1010 0000 0000 0000 00__
0000 0000 0000 0101 0000 0010 0100 0___
0000 0000 0000 0010 0000 0000 0000 ____
0000 0000 0000 0001 0000 1001 000_ ____

 0000 1011 1101 0000

10/23/2017 Comp 411 - Fall 2017

Multiplier Unit-Block

We introduce a new abstraction to
aid in the construction of multipliers
called the “Unsigned Multiplier Unit-block”
We did a similar thing last lecture
when we converted our adder to an
add/subtract unit.
Ak are bits of the Multiplicand and
Bi are bits of the Multiplier.
The Pi,k inputs and outputs represent
“partial products” which are partial
results from adding together shifted
instances of the Multiplicand.
The initial P0,k is zero.

4

 A B
CO CI
 S

FA

A
i

B
i

Subtract

C
i

Ci-1

Si

Add/Subtract
Unit Block

 A B
CO CI
 S

FA

pi-1,k

Ak B
i

Ck Ck-1

pi,k

Unsigned
Multiply

Unit Block

10/23/2017 Comp 411 - Fall 2017

Simple Combinational Multiplier

5

tPD = 10 * tPD

not 16

NB: this circuit only
works for
nonnegative operands

Components
N * HA

N(N-1) * FA

HA
 A
Co
B
 S

HA
 A
Co
B
 S

HA
 A
Co
B
 S

HA
 A
Co
B
 S

tPD = (2*(N-1) + N) * tPD

To determine the
timing specification of
a composite
combinational circuit
we find the
worst-case path for
every output to any
input.

Is this faster
than our
assembly code?

10/23/2017 Comp 411 - Fall 2017

“Carry-Save” Multiplier

6

tPD = 8 * tPD

Components
N * HA
N2 * FA

Observation: Rather than
propagating the carries
to the next adder in each
row, they can instead be
forwarded to the next
column of the following
row

This small
performance
improvement
hardly seems
worth the
effort,
however, this
design is
easier to
“pipeline”.

These
Adders can
be
removed,
and the
AND gate
outputs
tied
directly to
the Carry
inputs of
the next
stage.

tPD = (N+N) *
tPD

10/23/2017 Comp 411 - Fall 2017

Higher-Radix Multiplication

7

BK+1,K*A = 0*A
 = 1*A
 = 2*A Just a shift
 = 3*A Requires adding

 AN-1 AN-2 … A3 A2 A1 A0
 BM-1 BM-2 … B3 B2 B1 B0x

...

2M/2

Idea: If we could use, say, 2 bits of the multiplier in generating each
partial product we would halve the number of rows and halve the
latency of the multiplier!

BK+1,K*A = 0*A ⇨ 0
 = 1*A ⇨ A
 = 2*A ⇨ 2A or 4A – 2A
 = 3*A ⇨ 4A – A

Booth’s insight: rewrite 2*A
and 3*A cases, leave 4A for
next partial product to do!

10/23/2017 Comp 411 - Fall 2017

Booth Recoding of Multiplier

8

B2K+1

0
0
0
0
1
1
1
1

B2K

0
0
1
1
0
0
1
1

B2K-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed to add
4*A. Since this stage is shifted by 2 bits with respect
to the previous stage, adding 4*A in the previous stage
is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair

An encoding where
each bit has the
following weights:

W(B2K+1) = -2 * 22K

W(B2K) = 1 * 22K

W(B2K-1) = 1 * 22K

-89 = 1 0 1 0 0 1 1 1 .0

= -1 * 20 (-1)
+ 2 * 22 (8)
+ (-2) * 24 (-32)
+ (-1) * 26 (-64)

Hey, isn’t
that a

negative
number?

-89

Yep! Booth recoding works
for 2-Complement
integers, now we can build
a signed multiplier.

10/23/2017 Comp 411 - Fall 2017

Booth Multiplier unit block

9

Logic surrounding each basic adder:

 - Control lines (x2, Sub, Zero)
 Are shared across each row
 - Must handle the “+1” when Sub is 1
 (extra half adders in a carry-save
 array)

NOTE:
 - Booth recoding
 can be used to
 implement signed
 multiplications

 A B
CO CI
 S

FA

0 1 x2
Sub

Zero

Ai Ai-1

Signed
Multiply

Unit Block

pi,k

pi,k-1B2K+1 B2K B2K-1 x2 Sub Zero

0 0 0 X X 1
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 X X 1

10/23/2017 Comp 411 - Fall 2017

Bigger Multipliers

10

• Using the approaches described we can construct multipliers
of arbitrary sizes, by considering every adder at the “bit” level

• We can also, build bigger multipliers using smaller ones

• Considering this problem at a higher-level leads to more
“non-obvious” optimizations

×

A

4

B

4

 4
PH

I

 4
PL

O

10/23/2017 Comp 411 - Fall 2017

Can We Multiply With Less?

11

• How many operations are needed to
multiply 2, 2-digit numbers?

• 4 multipliers
4 Adders

• This technique generalizes
– You can build an 8-bit multiplier using

4 4-bit multipliers and 4 8-bit adders
– O(N2 + N) = O(N2)

 AB
 x CD
 DB
 DA
 CB
 CA

10/23/2017 Comp 411 - Fall 2017

O(N
2
) multiplier logic

The functional blocks look like

12

 AB
 x CD
 DB
 DA
 CB
 CA

MultMultMultMult

B C A D B

AddAdd

AddAddHA

Product bits

10/23/2017 Comp 411 - Fall 2017

A Trick

● The two middle partial products can be computed using a single
multiplier and other partial products

● DA + CB = (C + D)(A + B) – (CA + DB)
● 3 multipliers

8 adders
● This can be applied recursively

(i.e. applied within each partial product)
● Leads to O(N1.58) adders
● This trick is becoming more popular

as N grows. However, it is less regular,
and the overhead of the extra adders
is high for small N

13

 AB
x CD
 DB
 DA
 CB
 CA

10/23/2017 Comp 411 - Fall 2017

Let’s Try it By Hand

1) Choose 2, 2 digit numbers to multiply: ab × cd

2) Multiply digits: p1 = a x c, p2 = b x d, p3 = (c + d)(a + b)

3) Compute partial subtracted sum, SS = p3 - (p1 + p2)

4) Add as follows: p = 100 x p1 + 10 x SS + p2

14

42 x 37 = ?

42 x 37

p1 = 4 x 3 = 12, p2 = 2*7 = 14, p3 = (4+2)x(3+7) = 60

SS = 60 - (12 + 14) = 34

P = 1200 + 340 + 14 = 1554 = 42 x 37

10/23/2017 Comp 411 - Fall 2017

An O(N
1.58

) Multiplier

The functional blocks would look like:

15

 AB
x CD
 DB
 SS
 CA

Where
 SS = (C+D)(A+B)
 – (CA+DB)

Mult

Mult

Mult

C A D B

AddAdd

Add Add

HA

Product bits

Add Add

Add Add

SS

Note: Adders with
a bubble on one of
their inputs
becomes a
subtractor in this
notation.

10/23/2017 Comp 411 - Fall 2017

Next time

● We dive into floating-point arithmetic

16

