BINARY MULTIPLICATION

The key to multiplication was memorizing a digit-by-digit table... Everything else was just adding

\times	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

You've got to be kidding.. It can't be that easy

DIGIT BY DIGIT = BIT BY BIT

The "Binary"
Multiplication Table

Binary multiplication is implemented using the same basic longhand algorithm that you learned in grade school.

$$
\begin{aligned}
& A_{i} B_{i} \text { is a } \\
& \text { "partial product" } \\
& A_{3} B_{1} \quad A_{2} B_{1} \quad A_{1} B_{1} A_{0} B_{1} \\
& A_{3} B_{2} A_{2} B_{2} \quad A_{1} B_{2} A_{0} B_{2} \\
& +A_{3} B_{3} A_{2} B_{3} A_{1} B_{3} A_{0} B_{3} \\
& \begin{array}{l}
\text { gate since } B_{1} \text { is } \\
\text { either } O \text { or } 1 \text {) }
\end{array} \\
& \text { Hard part. } \\
& \text { adding M, N-bit } \\
& \text { partial products }
\end{aligned}
$$

Easy part:
forming partial products (just an AND

Multiplying N -digit number by M -digit number gives ($\mathrm{N}+\mathrm{M}$)-digit result

multiplying in Assembly

One can use this "Shift and Add" approach to write a multiply function in assembly language:

Multiplier Unit-block

We introduce a new abstraction to aid in the construction of multipliers called the "Unsigned Multiplier Unit-block" We did a similar thing last lecture when we converted our adder to an add/subtract unit.
A_{k} are bits of the Multiplicand and B_{i} are bits of the Multiplier.
The $P_{\text {ik }}$ inputs and outputs represent "partial products" which are partial results from adding together shifted instances of the Multiplicand.
The initial $P_{0, k}$ is zero.

SIMPLE COMBINATIONAL MULTIPLIER

Is this faster
$t_{P D}=10 * t_{P D}$
not 16
$t_{P D}=\left(2^{*}(N-1)+N\right)^{*} t_{P D}$

Components
N*HA
$\mathbf{N (N - 1)}$ * $\mathbf{F A}$

NB: this circuit only works for
nonnegative operands

"CARRY-SAVE" MULTIPLIER

Observation: Rather than propagating the carries to the next adder in each row, they can instead be forwarded to the next column of the following row

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{PD}}=8 * \mathrm{t}_{\mathrm{PD}} \\
& \mathrm{t}_{\mathrm{PD}}=(\mathrm{N}+\mathrm{N}) \\
& \text { *omponents }
\end{aligned}
$$

$$
\frac{\mathbf{N}^{2+} \mathrm{FA}}{}
$$

HIGHER-RADIX MULTIPLICATION
Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of rows and halve the latency of the multiplier!

\square
\square
Booth's insight: rewrite 2*A and $3 * A$ cases, leave 4A for next partial product to do!

$$
\begin{aligned}
B_{K+1, K}{ }^{*} A & =0^{*} A \Rightarrow 0 \\
& =1^{*} A \Rightarrow A \\
& =2^{*} A \Rightarrow 2 A \text { or } 4 A-2 A \\
& =3^{*} A \Rightarrow 4 A-A
\end{aligned}
$$

BOOTH RECODING OF MULTIPLIER

current bit pair from previous bit pair

Yep! Booth recoding works for 2-Complement integers, now we can build a signed multiplier.

A "1" in this bit means the previous stage needed to add $4 *$ A. Since this stage is shifted by 2 bits with respect to the previous stage, adding $4 * A$ in the previous stage is like adding A in this stage!

BOOTH MULTIPLIER UNIT BLOCK

Logic surrounding each basic adder:

- Control lines ($\times 2$, sub, Zero) Are shared across each row
- Must handle the "+1" when sub is I (extra half adders in a carry-save array)

NOTE:

- Booth recoding can be used to implement signed multiplications

$B_{2 K+1}$	$B_{2 K}$	$B_{2 K-1}$	X2 Sub Zero		
0	0	0	X	X	1
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	X	X	1

Zero

BigGer Multipliers

- Using the approaches described we can construct multipliers of arbitrary sizes, by considering every adder at the "bit" level
- We can also, build bigger multipliers using smaller ones

- Considering this problem at a higher-level leads to more "non-obvious" optimizations

can we multtply with less?

- How many operations are needed to multiply 2,2-digit numbers?
- 4 multipliers

4 Adders

- This technique generalizes
- You can build an 8-bit multiplier using

44 -bit multipliers and 48 -bit adders
$-O\left(N^{2}+N\right)=O\left(N^{2}\right)$

$O\left(N^{2}\right)$ MULTTPLIER LOGIC

The functional blocks look like

$A B$
 $\frac{\times C D}{D B}$
 DA
 CB
 CA

A TRICK

- The two middle partial products can be computed using a single multiplier and other partial products
- $D A+C B=(C+D)(A+B)-(C A+D B)$
- 3 multipliers

8 adders

- This can be applied recursively (ie. applied within each partial product)
- Leads to $0\left(N^{158}\right)$ adders
- This trick is becoming more popular as N grows. However, it is less regular, and the overhead of the extra adders is high for small N

AB
$\mathrm{X} \quad \mathrm{CD}$
DB
DA
CB
CA

LET'S TRY It By Hand

1) Choose 2,2 digit numbers to multiply: $a b \times c d$

$$
42 \times 37
$$

2) Multiply digits: $p 1=a \times c, p_{2}=b \times d, p 3=(c+d)(a+b)$

$$
\mathrm{p} 1=4 \times 3=12, \mathrm{p} 2=2^{*} 7=14, \mathrm{p} 3=(4+2) \times(3+7)=60
$$

3) Compute partial subtracted sum, $S 5=p_{3}-\left(p 1+p^{2}\right)$

$$
S S=60-(12+14)=34
$$

4) Add as follows: $p=100 \times \mathrm{pl}^{1}+10 \times 55+\mathrm{p}^{2}$

$$
P=1200+340+14=1554=42 \times 37
$$

AN $\Delta\left(N^{1.55}\right)$ MULTTPLIER

The functional blocks would look like:

Where

$$
\begin{aligned}
S S & =(C+D)(A+B) \\
& -(C A+D B)
\end{aligned}
$$

Product bits

NEXT TIME

- We dive into floating-point arithmetic

