SHIFTING AND BOOLEAN VNITS

So they all rolled over and one fell out! ® 5hi—P+c; of ~;hi—P+c5
® Boolean Ioaic

e An ALU

0/1/2.017 Comp 41 - Fall 2017

SHIFNING Loosic

5hl£‘+lﬂ is a common operation that is aPPIied to

groups of bits, ShiPrinﬂ is used For ali%nment
selecting ports ofF a word, as well as for
arithmetic oper'aﬁons.

X << | isappr'ox-l-heeameas 26X
X >> 1 cah be the same as X/2

For example:
X =20,,=00010100,

Left shift:

(X << 1) =00101000, = 40,
Right shif:

(X >>1) =00001010, = 10,
Signed or "Arithmetic' Right Shift:

(-X>>1) = (11101100, >> 1) = 11110110, =-10

0/1/2.017 Comp 41 - Fall 2017

10

N

2]

)

=S

w

N

-_—

X X X X X X X X

o

HOL

NIRRT RIS NSNS

LFT1

MORE S'HOFT?NC»

(]

R,

(3}

NS

w

N

=Y

X x x x Xx X X X

o

“0”
LFT1

I0/16/2-017

\" INRINI NI NSNS NSNS

S
X [o
0 S
1/ 6
X N o
1/ 5
X, Y s
1/ 4
X N o
[N
0 S
1/ 2
X, L N
—L
% [
“0”J_1/ 0
LFT2

—Comp 4 -

u;inﬂ the same
basic idea we can
build lef+ shifFters
of ar'loiJrr'ar'y shif+
amounts uc;ina
MuXes.

Each shift amount
requires its owhn
set of muxes.

Hum, maybe
we could do
something

more clever.

AN
‘_

Fall 2017

X o s
1/ 7
X | o\
1/ 6
Xs | o\
1/ 5
Xl N
1/ 4
X N
1/ 3
XAl 2N
x AT
0 S1
e
X 1o\
“0” 1/ 0
LFT3

BARREL SHIFTING
X

7Ty N ~. S
< 1 T
X L < 1 7
6 = Re S <
< 1 0 T
X L < 1 6
< 1 0 T
X L < 1 5
4 BN R <
0 4 N S
< 1 0 T
X L < 1 4
3 N Rs S <
< 1 0 T
X L < 1 3
< 1 0 T
X L < 1 2
1 Y R S <
< — 1 0 T
X ‘ L < 1 1
0 NN R | <
171 YL 0 0 0\ So
0 — i“()”? 1 Ia T
—LU “0,, 1/ 0
LFT1
LF12_ | | F14
0/1/2.017 Comp 41 - Fall 2017

I+ we connect our
‘shift-leFH-two" shifter to
the output of our
'shift-lef+-one' we can
shif+ by O, | 2, or 3 bits,

And, if we add one more
‘shift-left-4" shifter we
con do any shif+ up to 7
bitsl

So, let's put a box around it
and call it a hew functional

block. A
T N-bits

'°§.zt<N) Left

(15

S Barrel
Shifter

{ N-bits
Y

ADDING A TWIST i

I+ would be 9+r‘aiﬂhﬂ:or‘ward to construct a "r‘iath barrel shifter' unit.
However, a simple trick that enables a 'left barrel shifter"' to do both.

AA, ALA, ALA, AJA, A/A, ALA, AJA, A A,

o TN YR Y Y T

SHFT 47/ Left Barrel Shifter /

Y, Y, Y, Yo Y, ¥, Y. Y, Y, Y, Y. Y, YY Y,

Z7 ZG Z5 Z4 Z3 2 1 0

0/1/2.017 Comp 41 - Fall 2017

ROTATE AND ARITHMETIC SHIFTS

N

The basics are the same for logjcal

(o2}

=)

7
w

and arithmetic shifts except instead

(3

ofF shiPrinﬂ in zeros for the vacated

bits on arithmetic shifts, you shift in

i =S

copies ofF X, For rotates, you shif+
in the bits from the other end

w

N

This adds two control lines, ASR,

X X X X X X X X

N ST XY NI NTNT KT KT X

| ASR
ond ROT, which are shared vl 1
1o
amongst all ok the LFTx units. i ‘1’\
ol 5 X
X0—1/ 0
X, N
ROT LF

0/1/2.017 ComP 41 - Fall 2017 —

BITwISE Looical OPERATIONS

We need to PerPorm logical operations, or Booleans, on
groups of bits. Which ones?
ANDing is used For ‘masking’ olf groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)
ORing is used For 'seHina' groups of bits.
ex. 10101110 | 00001111 =10101111 (1’s set last 4 bits)
EORIing is used for 'complemenﬁna' groups of bits.

ex. 10101110 ~ 00001111 = 10100001 (1’s complement last 4
bits)

BiCing is used to ‘clear" groups of bits (BIC = bit clear).
ex. 10101110 & ~(00001111) = 01010000 (1’s clear)

0/1/2.017 Comp 41 - Fall 2017

p—_ %
BOOLEAN VNIT (THE oBVIovs way) |||

e
1t is simple to build up a Boolean unit using primitive
gotes and a mux to select the Function A
i | i

Since there is ho interconnection Z?:g?g’c
between bits, this unit can be simply repeated for

_ o each bit (ie.
rePhcaJred at each Polerlon. The cost EQU 32 {imes)
is about 7 gotes per bit. One for

each primitive Function, and Bool 00 o1 10 71 /
approx 3 for the 4—inpu+ MUX. \‘

This is a 9+raiﬁh+1:orwarcl, but not elegant design. (‘2 A\?
i

10/16/2.017 Comp 4l - Fall 2017 8

COOLER BOOLS

We can better leveroge a MUX's capobilities in our Boolean unit desiﬁn,

by connecting the bits to the select lines. MVN I should pay
MOV OR mov o
Why is this better? OR EOR AND [ﬂf;f'i“ﬁf;

MVN EOR BIC OR
While it miﬁanr toke a little

——ir <]
logic to decode the truth A, B. /

table inPquc;, you only have ‘
Q.

to do it once, ir\depender\Jr

of the humber of bits. ' A B
| W {4
BTW, it adlso handles the m:if;iﬁ::é Obcod
. JPCOUE_2 Boolean
MOV and MVN cases. sense fo you. Let's
get a box around H! {
Q

0/1/2.017 Comp 41 - Fall 2017

A
|F

[l

DECODING THE BOOLEANS AND OTHERS

S —
H' may Geem a \IH’\G Opcode Code 00 01 10 11 Sub | Rsb | Math
. AMND 0 0 0 0 0 0 0 1 X X 0
tedious, but all the —— T T e T T
controls that we need || R U e N
RSE 0 0 1 i X X X X 0 1 1
caoh be derived from oo folsfolofx|x[x]x]ofol]s
d ADC 0 i 0 i x X X X 0 0 :
+he AKM O Co e SBC 0 1 1 0 X x x X 1 0 1
. P RSC 0 1 1 1 X X X X 0 1 1
encoalnag' TST 1 0 0 0 0 0 0 1 X X 0
TEQ 4 0 0 I 0 b B 1 0 X X 0
The 'X's in the truth e RN < | < | x x |10 |
CMN 1 0 1 1 X X X X 0 0 1
table are 'don't cares" ore |2]2]o]o o212 o |x]|x]|o
R . .. MOV : i 0 1: 0 1 0 i X X 0
they provide Hexibility e T T T o o o T 1o T <1
MWVIN 1 1 1 1 1 0 1 0 X x 0

in the implemer\JraJrion.

0/1/2.017 Comp 41 - Fall 2017 10

AN ALV, AT LAST

We ﬂive the 'Math Center' of a computer a special name--
the Arithmetic I_oaic unit (ALU). For us, it Juer a big boxl

A B
Shft \ 5 V / *
/

\ / Bidirectional
Rot/Asr 2 Barrel Shifter

l

Sub/Rsb 2 ADD
SUB Boolean

\ RSB
|
Math i
L |

CV N R Z

0/1/2.017 Comp 41 - Fall 2017

4 b00,b01,b10,b11

